
Workflow Anomaly Detection with
Graph Neural Networks

Hongwei Jin∗, Krishnan Raghavan∗, George Papadimitriou†, Cong Wang‡, Anirban Mandal‡,
Patrycja Krawczuk†, Loı̈c Pottier† Mariam Kiran§, Ewa Deelman†, Prasanna Balaprakash∗

∗Mathematics and Computer Science Division, Argonne National Laboratory, USA
{jinh, kraghavan, pbalapra}@anl.gov

†Information Sciences Institute, University of Southern California, USA
{georgpap, krawczuk, lpottier, deelman}@isi.edu

‡RENCI, University of North Carolina at Chapel Hill, USA
{cwang, anirban}@renci.org

§Energy Sciences Network (ESnet), Lawrence Berkeley National Laboratory, USA
mkiran@es.net

Abstract—Reliable execution of scientific workflows is a funda-
mental concern in computational campaigns. Therefore, detecting
and diagnosing anomalies are both important and challenging for
workflow executions that span complex, distributed computing
infrastructures. In this paper we model the scientific workflow
as a directed acyclic graph and apply graph neural networks
(GNNs) to identify the anomalies at both the workflow and
individual job levels. In addition, we generalize our GNN model
to take into account a set of workflows together for the anomaly
detection task rather than a specific workflow. By taking ad-
vantage of learning the hidden representation, not only from
the job features, but also from the topological information of
the workflow, our GNN models demonstrate higher accuracy
and better runtime efficiency when compared with conventional
machine learning models and other convolutional neural network
approaches.

Index Terms—Scientific workflows, Anomaly detection, Graph
neural networks

I. INTRODUCTION

Computational science today depends on many complex,
data-intensive applications operating on datasets that origi-
nate from a variety of scientific instruments and repositories.
Automating the execution of computational applications is
necessary for improving efficiency, robustness, and scientific
productivity. Scientific workflows have served as a useful
abstraction for conducting these computational experiments in
several domains such as astronomy, physics, climate science,
earthquake science, and biology [1]. Large-scale workflows
typically comprise thousands of compute and/or data-intensive
tasks, with intricate data, and control dependencies and process
vast amounts of data (from remote sensors, instruments, etc.)
to conduct complex modeling, simulations, and data analy-
sis tasks. Scientific workflow management systems, such as
Pegasus [2], are critical automation components that enable
efficient and resilient workflow execution across distributed
and heterogeneous infrastructures.

Science workflows are increasingly being executed by us-
ing distributed, federated, heterogeneous cyberinfrastructure
resources that span multiple locations (e.g., scientific data

collection from instruments, computing and storage resources
including supercomputers, high-performance computing clus-
ters, cloud computing systems, and visualization facilities)
connected by high-performance networks [3], [4]. The dis-
tributed infrastructures are complex because of their inherent
characteristics: resource heterogeneity, deployment of complex
and heterogeneous system software stacks, and distributed
control, stemming from their management by different or-
ganizations, domains, and communities. Hence, the operators
of these infrastructures and the scientists who use them have
limited visibility and thus limited understanding of the entire
set of resources used by the science workflows and their
behavior. This limited visibility makes it extremely difficult
to detect and diagnose anomalies in the infrastructure (e.g.,
network congestion, system I/O bottlenecks, file system over-
load) and to understand how they propagate all the way up to
the scientists’ workflows, resulting in performance degradation
and faults in workflow execution.

Many existing anomaly detection methods [5]–[9] are not
sufficient to correlate data coming from disparate sources of
infrastructure with each other and with information captured at
the application level. Also, many prevalent workflow anomaly
detection methods are based on thresholds or fixed rule-based
procedures [5], [10], which fail to understand longitudinal
patterns, miss opportunities for anomaly detection, and can
seldom be used for identifying the root cause of the anoma-
lies [5].

Given the scale, complexity, and limited visibility of
distributed infrastructures and the need to synthesize dis-
parate data from multidomain infrastructure resources, ma-
chine learning (ML) and deep learning (DL) approaches
have recently gained importance for detecting and diagnosing
anomalies that occur when executing complex workflows on
distributed infrastructures. In [7], DL techniques have been
used to develop a mechanism that forecasts anomalous behav-
iors of dynamic jobs in high energy physics experiments by
gathering minimal data as early as possible in the job’s life
cycle. Improvements of up to 14% in resource utilization are

reported, but only application-specific metrics are considered
(e.g., CPU/GPU load and memory and disk usage). In [11],
Wang et al. used k-means clustering and decision trees to
detect workflow and task-level anomalies, considering only
application-level metrics. In [12], Gaikwad et al. used autore-
gression analysis for time-series data on specific application
metrics in scientific workflows to detect I/O bottlenecks. While
these prior successes are promising, they do not address, in a
holistic way, the challenges associated with anomaly detection
for complex science workflows.

A recent related work [13] suggested capturing the workflow
job features in Gantt charts and used convolutional neural
network (CNN) classifiers for anomaly detection. However, it
missed the inherent topological information in the workflows.

In this paper we present a novel graph neural network
(GNN)-driven approach that holistically models key issues
in anomaly detection within complex science workflows. In
particular, we first describe the science workflows as a directed
acyclic graph (DAG) to model the interdependencies (includ-
ing intricate data and control dependencies) between different
jobs and capture key workflow performance features from
applications and the infrastructure. Modeling and training the
problem using GNN approaches allow us to capture these
dependencies and predict whether a workflow (graph) or a
job (node) is anomalous or not. More interestingly, since there
are no restrictions on the input of these graphs, such as number
of jobs in workflows, our GNN approach can take different
workflows for training at the same time, making our method
generalizable to a wide range of workflows, in contrast with
existing works in the literature.

The main contributions of the paper are as follows.
• We adapt a simple and efficient GNN-based approach to

learn the node embedding from both the workflow job
features and local dependencies.

• We explore and evaluate the workflow anomalies from
both the graph level (workflows) and the node level
(jobs).

• We build an anomaly detection model from different
types of workflows simultaneously.

• We determine the effectiveness and efficiency of the
GNN model by comparing it with conventional machine
learning models and previous CNN approaches.

II. WORKFLOW MODEL

Traditional workflow management systems represent work-
flows as DAGs, in which jobs are represented as nodes and
dependencies between jobs are represented as edges. A job
can start its execution if and only if all its predecessors (parent
jobs) have successfully finished their jobs. More formally, a
DAG G = (V, E), where V = {v1, · · · , vn} represents the set
of n jobs and E ⊆ V2 represents data dependencies between
jobs. If eij = (vi, vj) ∈ E , job vi must complete its execution
before vj can start. We define succ(vi) = {vk | (vi, vk) ∈ E}
(resp. pred(vi) = {vk | (vk, vi) ∈ E}) to be the successors
(resp. predecessors) of job vi ∈ V .

v1

v2

v3

v4

v5

e12

e13

e24

e35

e25

Fig. 1. Example of a DAG.

In this work we use Pegasus [2], an exemplar workflow
management system, which enables users to design workflows
at a high level of abstraction that is independent of the re-
sources available to execute them and the location of data and
executables. Pegasus transforms these abstract workflows into
executable workflows, by concertizing the job specifications
and by introducing data transfer and auxiliary jobs to establish
a successful execution environment on the compute resources.
Pegasus workflows have been deployed on distributed and
high-performance computing resources (e.g., NERSC [14] and
OLCF [15]), shared computing resources (e.g., XSEDE [16]
and OSG [17]), local clusters, and clouds.

In Pegasus, edges (eij) represent sequential dependencies
and data dependencies, while jobs (vi) can be classified into
three main categories:

• Compute: a job that describes a computational task
• Transfer: a job that moves data to/from an execution site
• Auxiliary: a job that creates working directories or cleans

up unused data.
Additionally, Pegasus collects provenance data and events
during the execution of a workflow, and it supports end-
to-end workflow execution monitoring. Pegasus via its
Panorama [18], [19] branch can collect execution traces of
the computational tasks, statistics for individual transfers and
infrastructure-related metrics, which get stored into an Elas-
ticsearch instance [20]. These metrics can be associated with
the jobs (nodes) of a workflow (DAG) after execution and
describe the performance of the job. Currently, edges are not
overloaded with any additional features.

In this paper we describe the jobs using the node features
of Listing 1, which is a subset of what Pegasus monitoring
can offer. For each node vj ∈ V , we have the following:

• Setup features that describe the executable, the argu-
ments used, the execution site, and the user that triggered
the workflow

• Timing features that describe the start and the end of
the different phases of a job

• Execution features that describe the hostname the job
assigned, the resources used, the amount of data gener-
ated, and the exit code

• Composite features that combine timing features to
generate relative times.

The meaning of each composite field and how they are
calculated is described below:

• Ready time: timestamp since the beginning of the work-
flow, where all dependencies have been met and the

"type": <enum(compute, auxiliary, transfer)>,
"is_clustered": <bool>,
"submit_ts": <epoch>,
"pre_script_start_ts": <epoch>,
"pre_script_end_ts": <epoch>,
"stage_in_start_ts": <epoch>,
"stage_in_end_ts": <epoch>,
"execute_start_ts": <epoch>,
"execute_end_ts": <epoch>,
"stage_out_start_ts": <epoch>,
"stage_out_end_ts": <epoch>,
"post_script_start_ts": <epoch>,
"post_script_end_ts": <epoch>,
"transformation": <string>,
"executable": <string>,
"arguments": <string>,
"user": <string>,
"hostname": <string>,
"execution_site": <string>,
"num_of_bytes_staged_in": <int>,
"num_of_bytes_staged_out": <int>,
"cpu_time": <float>,
"exitcode": <int>,
composite fields
"ready_ts": <epoch>,
"wms_delay": <int>,
"queue_delay": <int>,
"pre_script_delay": <int>,
"runtime": <int>,
"post_script_delay": <int>,
"stage_in_delay": <int>,
"stage_out_delay": <int>

Listing 1: Features describing a job.

job can be dispatched. This timestamp is equal to the
timestamp the last parent dependency was met.

• Prescript delay: time spent on a script that is executed
before job submission, if it exists (pre script stop ts -
pre script start ts).

• WMS delay: time spent by the workflow management
system to prepare and submit the job (submit ts -
ready ts).

• Queue delay: time spent in the queue waiting for re-
sources (execute start ts - submit ts).

• Stage-in delay: time spent transferring input data
(start in end ts - start in start ts).

• Runtime: time spent during computation
(execute end ts - execute start ts).

• Stage-out delay: time spent transferring data to the
intermediate scratch directory or final output directory
(start out end ts - start out start ts).

• Post-script delay: time spent on a script executed after a
job indent exits (e.g., WMS parses stdout and exits code)
(post script stop ts - post script start ts).

These features capture the end-to-end performance of the
workflows, including application and infrastructure metrics,
and are used to build the GNN models (Section III).

III. GNN MODEL FOR ANOMALY DETECTION

Given a workflow, our goal is to determine whether an
anomaly is associated with this workflow or not. These anoma-
lies could occur due to CPU or hard disk abnormalities and

Fig. 2. Graph neural network architecture.

could be present in any specific job (more details regarding
these anomalies are described in Section IV). To detect these
anomalies, we developed a graph neural network model that
takes the workflows (modeled as DAGs with features) as input
and detects the existence of anomalies in a supervised fashion.

Specifically, we designed a simple graph neural network
based on graph convolutional layers (GCNs, [21]). Our GNN,
visualized in Figure 2, consists of two modules: the GCN
module that provides the hidden layer embedding and the
multilayer perceptron (MLP) module that detects the anomaly.
We use the GNN for detecting anomalies job-wise (by formu-
lating a node classification problem) and workflow-wise (by
formulating a graph classification problem). The GCN module
comprises two layers where each layer consists of a GCN
operation followed by a rectified linear unit (ReLU) activation
function. The MLP module is then applied to the hidden
embedding provided by the GCN module to calculate the
probability of a workflow/job (graph/node) being anomalous
or not. For the workflow anomaly detection scenario, a global
average pooling (mean of the hidden embedding across all
jobs) is applied prior to the MLP module. The goal of the
mean pooling is to integrate out the variation of information
across jobs. On the other hand, in the job anomaly detection
scenario, the MLP module is applied to each node, and we
evaluate whether each job is anomalous or not.

Specifically, given a graph representation of a workflow
G = (A,X), where X ∈ Rn×m is a matrix representing the
node features, and A ∈ Rn×n is a matrix representing the
directed adjacency matrix, i.e., Aij = 1 node vi to node vj ,
0 otherwise. We define the anomaly detection module as

z = MLP(f(GCN(A,X))). (1)

The total number of jobs in each workflow is represented by
a variable n and the number of anomalies is represented by
p. Therefore, z ∈ Rn×p for job anomaly detection and z ∈
R1×p for workflow anomaly detection. For workflow anomaly
detection, the function f is the global average pooling (GAP
defined as

GAP(H) =
1

N

N∑
k=1

Hk, (2)

where H is the output of the GCN module. In the case of
job anomaly detection, where no average pooling is done, the
output of the GCN module provides the hidden representation
corresponding to each job.

...c1 c2 c3 c4 c22 ...s1 s2 s3 s4 s22...p1 p2 pn

... fc 2505fc 1 fs 3fp 1 fp 2 fp n...

...m1 m2 m3 m154 ...fr1 fr2 fr3 fr154

i 3 pop 2 sh 3

om 1

Data Preparation
Populations Sifting

Individuals
1000 Genome Populations Sifting

Pair
Overlap

Mutations

Individuals

Analysis

ofm 1

Input Data

Output Data fom 2 fog 2

Frequency
Overlap

Mutations

Fig. 3. The 1000Genome Pegasus workflow.

The GCN module learns the hidden node embedding H
by aggregating the information from its neighbors. Intuitively,
the GCN layer captures the dependencies between a job and
its neighbor jobs (successors). This operation is performed
by concatenated layer-wise propagations mathematically rep-
resented by the (l + 1)th hidden embedding as

H(l+1) = σ(D̂−1/2ÂD̂−1/2H(l)W(l) + b(l)), (3)

where Â = A + I denotes the adjacency matrix with in-
serted self-loops and D̂ is the diagonal degree matrix of Â.
W(l),b(l) are the learnable parameters and σ(·) representing
the ReLu activation functions. And for the first layer, where
l = 0, H0 = X as the input of node embedding.

IV. EXPERIMENTAL SETUP

A. Representative Workflows

To evaluate our GNN approach, we use the following
representative science workflows.

1000Genome workflow: This Pegasus workflow (Figure 3)
is based on the 1000 Genomes project, which provides a ref-
erence for human variation, having reconstructed the genomes
of 2,504 individuals across 26 different populations [22].
The workflow identifies mutational overlaps for statistical
evaluation of potential disease-related mutations [23]. The
workflow is composed of five tasks: (1) individuals – fetches
and parses the Phase 3 data from the 1000 Genomes project
per chromosome; (2) populations – fetches and parses five
super populations and a set of all individuals; (3) sifting –
computes the SIFT scores of all of the single nucleotide
polymorphisms variants, as computed by the Variant Effect
Predictor; (4) pair overlap mutations – measures the overlap

NowcastToWDSS2

MergeDarts.nc

PredictedReflectivity_0min.nc PredictedReflectivity_30min.nc. . .

NetCDFToPNGmrtV2

nexrad_ref.pngmrtV2_config.txt

Storm_CASA_0.geojson

PredictedReflectivity_0min.png

NetCDFToPNGmrtV2

nexrad_ref.pngmrtV2_config.txt

Storm_CASA_30.geojson

PredictedReflectivity_30min.png

Input File
Intermediate File
Output File
Compute Job

Fig. 4. CASA Nowcast Pegasus workflow.

in mutations among pairs of individuals; and (5) frequency
overlap mutations – calculates the frequency of overlapping
mutations across subsamples of certain individuals.

CASA Nowcast workflow: Nowcasts [24] are short-term
advection forecasts generated by mosaicing asynchronous in-
dividual CASA [25] radar reflectivity data, accumulating the
composite grids over a short duration, and projecting into the
future by estimating the derivatives of motion and intensity
with respect to time. Every minute the CASA Nowcasting
system generates 31 grids of predicted reflectivity, one for
each minute into the future 0–30 minutes. The Nowcast
workflow creates raster images for all grids every minute and
then contours for multiple reflectivity levels on each of these
grids. The Pegasus Nowcast workflow (Figure 4) contains
63 compute tasks, with one task to split the input data into
individual grids and then 62 independent tasks to compute the
reflectivity and respective contour images.

CASA Wind workflow: This workflow [26] identifies areas
of maximum observed wind magnitudes using data from a
network of seven overlapping Doppler weather radars from the
CASA system. This workflow periodically takes all available
scans and creates a new file in a World Geodetic System 1984
latitude/longitude projection representing the highest winds
that have been observed in the time period. The remainder
of the workflow computes geographic overlays of the wind
contours and communicates the risks to the relevant users of
the system. The Pegasus Wind workflow (Figure 5) has a data
preparation stage that unzips the input data, which is followed
by four compute tasks that output the wind products and notify
points of interest for severe weather.

B. Task Clustering

Pegasus enables clustering of workflow tasks into larger jobs
via horizontal or label task clustering, which changes the num-
ber of jobs in the final executable workflow. With horizontal
clustering, tasks on the same level are grouped together; with

unzip unzip unzip

radar_1.netcdf

radar_1.netcdf.gz radar_2.netcdf.gz

radar_2.netcdf radar_N.netcdf

max_velocity

MaxVelocity.netcdf

max_wind.png

merged_netcdf2png

MaxVelocity.png

mvt pointAlert_config.txt

locations.geojson

MaxVelocity.geojson
pointalert

alert.geojson

. . .

Input File
Intermediate File
Output File
Compute Job

radar_2.netcdf.gz

Fig. 5. CASA Wind Pegasus workflow.

TABLE I
STATISTICS OF WORKFLOWS

Workflow DAG Normal CPU HDD Packet Loss
Nodes Edges 2 3 50 60 70 80 90 100 0.1% 0.5% 1.0% 3.0% 5.0%

1000 Genome 57 129 200 125 125 150 75 75 75 75 125 50 50 50 50 50
CASA Nowcast w/ Clustering 8 13 20 270 150 150 60 60 60 60 60 60 60 60 60 60 60
CASA Nowcast w/ Clustering 16 9 12 270 150 150 60 60 60 60 60 60 60 60 60 60 60
CASA Wind w/ Clustering 7 8 270 150 150 60 60 60 60 60 60 60 60 60 60 60
CASA Wind w/o Clustering 26 44 270 150 150 60 60 60 60 60 60 60 60 60 60 60

label clustering, Pegasus groups together tasks that carry the
same label in their metadata. In our experiments we enable
horizontal clustering for the CASA Nowcast workflow and
label clustering for the CASA Wind workflow.

• CASA Nowcast with Clustering 8: Horizontal clustering
with max cluster size 8.

• CASA Nowcast with Clustering 16: Horizontal cluster-
ing with max cluster size 16.

• CASA Wind with Clustering: Label clustering, where
all the compute tasks except the unzip tasks are grouped
together.

C. Data Collection

To execute the three workflows, we provisioned resources
from the ExoGENI [27] testbed, including 7 virtual machines
(1 submit node, 5 worker nodes, and 1 data node). The worker
nodes are located within the same ExoGENI region, while
the submit node and the data node are located in a different
region. Each virtual machine has 4 2.2 GHz vCPUs, 10 GB
RAM, and 75 GB storage. The connectivity between the two
ExoGENI regions was established over a high-speed layer 2
VLAN. To facilitate the workflow execution, we configured
our nodes with Pegasus and HTCondor, and on the data node
we install a web server to serve files over HTTP.

1) Injecting Anomalies: To introduce synthetic network
and I/O anomalies, we used the Linux Traffic Control (TC)
toolset [28]. TC is able to replicate network anomalies such
as delay, packet loss, and jitter, by configuring the Linux kernel
packet scheduler. Additionally, to reduced the performance
of the worker nodes, we use the stress tool [29], a simple
workload generator that can impose a configurable amount of
CPU, memory, I/O, and disk stress on the system.

2) Workflow Data Collection: To collect the data, we used
the Pegasus Panorama branch [18], which offers advanced
monitoring capabilities [19]. It enables end-to-end online
workflow execution monitoring and provides execution traces
of the computational tasks, statistics for individual transfers,
and infrastructure-related metrics, which get stored in an
Elasticsearch instance [20].

During our data collection, we generated 6,000 traces of the
above workflows for 4 main classes, as seen in Table I. Ex-
amples of how these anomalies affect the workflow execution
can be found in our prior work [19].

• Normal. No anomaly is introduced – normal conditions.
• CPU. 2–3 cores are occupied by the stress tool on each

worker node.

• HDD. 50–100 MB of data are continuously written by
the stress tool on each worker node.

• Packet loss. The network connection between two Exo-
GENI regions is experiencing 0.1%–5.0% of packet loss.

V. EVALUATION OF THE GNN MODEL FOR ANOMALY
DETECTION

A. Model Setup and Metrics

For an exhaustive evaluation of our present approach, we
developed 24 GNN models. For each of the five workflows,
first we developed workflow-specific GNN models for binary
classification where (p = 2) and the multilabel classification
case (p = 4). In addition to these 20 models, we consider
a case “ALL” where all the workflows are utilized together
to train the GNN. The “ALL” experiment is unique in our
work since it allows a single GNN model to predict anomalies
across workflows even when these workflows have an unequal
number of jobs. We realize the “ALL” model for both the
binary, multilabel job anomaly and the workflow anomaly
cases.

We split the data into training, validation, and testing at
60%, 20%, and 20%, respectively. All the layers within the
GNN architecture take the hidden dimension of 64 with bias
terms and apply the cross-entropy loss to quantify the wellness
of the trained model. For the optimization, we employ the
Adam optimizer with a learning rate 1e−3. As the binary
classification of normal/anomaly are imbalanced, we report
not only the accuracy on the test dataset but also the F1-score,
precision score, and recall, which are widely used metrics for
imbalanced data.

B. Graph-Level Anomaly Detection

To diagnose anomalies of the workflows, we fed the graph
through the GCN module, then through the MLP module, and

10 20 30 40 50 60
of jobs

0.775

0.800

0.825

0.850

0.875

0.900

0.925

Ac
cu

ra
cy

 sc
or

e

1000genome

Nowcast w/ clustering 8

Nowcast w/ clustering 16

Wind w/ clustering

Wind w/o clustering

Fig. 6. Rationale behind accuracy vs. number of jobs in the workflow.

TABLE II
GRAPH-LEVEL CLASSIFICATION

Workflow Binary Multilabel
Accuracy F1 Recall Precision Accuracy

1000 Genome 0.921 ± 0.019 0.955 ± 0.011 0.955 ± 0.017 0.954 ± 0.006 0.852 ± 0.010
Nowcast w/ clustering 8 0.815 ± 0.017 0.873 ± 0.013 0.817 ± 0.024 0.937 ± 0.003 0.683 ± 0.008
Nowcast w/ clustering 16 0.828 ± 0.010 0.901 ± 0.005 0.982 ± 0.004 0.832 ± 0.004 0.593 ± 0.011
Wind w/ clustering casa 0.769 ± 0.003 0.860 ± 0.002 0.911 ± 0.003 0.815 ± 0.002 0.434 ± 0.010
Wind w/o clustering casa 0.817 ± 0.003 0.893 ± 0.002 0.971 ± 0.005 0.826 ± 0.002 0.586 ± 0.015
ALL 0.841 ± 0.006 0.907 ± 0.004 0.951 ± 0.010 0.867 ± 0.005 0.674 ± 0.008

TABLE III
NODE-LEVEL CLASSIFICATION

Workflow Binary Multilabel
Accuracy F1 Recall Precision Accuracy

1000 Genome 0.870 ± 0.001 0.927 ± 0.001 0.959 ± 0.006 0.896 ± 0.004 0.743 ± 0.006
Nowcast w/ clustering 8 0.798 ± 0.002 0.883 ± 0.001 0.961 ± 0.003 0.816 ± 0.002 0.590 ± 0.003
Nowcast w/ clustering 16 0.801 ± 0.003 0.876 ± 0.001 0.947 ± 0.007 0.815 ± 0.004 0.487 ± 0.009
Wind w/ clustering casa 0.775 ± 0.001 0.868 ± 0.001 0.991 ± 0.002 0.772 ± 0.001 0.389 ± 0.003
Wind w/o clustering casa 0.789 ± 0.001 0.879 ± 0.000 0.977 ± 0.002 0.799 ± 0.001 0.472 ± 0.002
ALL 0.829 ± 0.001 0.903 ± 0.000 0.980 ± 0.002 0.837 ± 0.002 0.594 ± 0.002

TABLE IV
GRAPH-LEVEL BINARY CLASSIFICATION BY ANOMALY CATEGORIES.

Workflow CPU HDD Loss Joint Anomalies
1000 Genome 1.000 0.981 0.722 0.921
Nowcast w/ clustering 8 0.763 0.968 0.719 0.815
Nowcast w/ clustering 16 0.745 0.825 0.790 0.828
Wind w/ clustering casa 0.544 0.779 0.693 0.769
Wind w/o clustering casa 0.784 0.967 0.784 0.817

evaluated probabilistic predictions for each graph. Table II
reports the graph classification performance on the testing
set in both binary and multilabel settings. In addition, to
generalize our approach to a wide range of different work-
flows, we evaluated the performance of a single model to
predict the anomaly in a set of workflows simultaneously,
denoted “ALL” in the last row. Figures 7 (a, binary) and (b,
multilabel) present the accuracies on training and validation
of a single model for “ALL” workflows. We can see that
the binary classification performs better than the multilabel
anomaly detection, demonstrating better detection for normal
versus anomaly than detecting a specific anomaly category,
and reaching around 10% to 30% higher accuracies across
different workflows.

Moreover, we investigated the rationale of the performance
from the perspective of workflow structures. Figure 6 shows
the relationship between the accuracy of the binary setting and
the number of jobs in the workflows. Clearly, the accuracy is
proportional to the workflow size; that is, with more complex
structures, the anomaly detection reaches higher accuracy.
This is largely due to the intrinsic property of graph neural
networks, where more complex structures help aggregate from
local neighbors through the layer-wise propagation, overcom-
ing the oversmoothing problems [30].

C. Node-Level Anomaly Detection

Detecting the anomaly jobs (nodes) within a workflow
(graph) is another fundamental problem in science workflows.
Unlike the graph-level approach with a single label for each
run, we assign the node labels by adapting the label from the

TABLE V
GRAPH-LEVEL BINARY CLASSIFICATION BY ANOMALY LEVELS

Workflow CPU CPU HDD HDD Loss Loss
2 3 60 100 0.5% 5%

1000 Genome 0.985 1.000 0.927 0.985 0.760 1.000
Nowcast w/ clust. 8 0.857 0.902 0.985 0.985 0.788 0.970
Nowcast w/ clust. 16 0.750 0.786 0.818 0.894 0.833 0.879
Wind w/ clustering 0.679 0.714 0.773 0.849 0.773 1.000
Wind w/o clustering 0.683 0.951 0.891 0.938 0.797 1.000

entire run. That is, the labels of the jobs are the same as the
label of a single run. The training, validation, and testing sets
are randomly sampled jobs across all the runs. Therefore, it is
sufficient to train the model with information from different
labels.

Similar to the graph-level setting, we report the performance
on the testing set in Table III. “ALL” in the last row represents
the performance of a single model training different workflows
at the same time. We observe that the binary (normal versus
anomaly) setting reaches better accuracy than the multilabel
setting does, the same observation we had in graph-level
anomaly detection. More specifically, the recall score, which is
a widely used metric for imbalanced data for binary problems,
reaches 0.98 even in the case of a single model utilizing all
workflows together. Figures 7 (c, binary) and (d, multilabel)
show the accuracies on training and validation of a single
model for “ALL” workflows in terms of node-level anomalies.

D. Anomaly Detection by Category

For both the graph-level and node-level anomaly detection
problems, the binary label setting outperforms the multil-
abel settings in terms of the test accuracy. We investigated
the rationale behind this performance and explored anomaly
detection by their categories. As described in Section IV,
there are three categories of anomalies: CPU-related anomaly
by stressing on each worker node, HDD-related anomaly
by continuously writing on each worker node, and network
packet-loss anomaly by enforcing packet loss between regions.

Table IV shows the average accuracy comparison based
on different anomaly categories for the graph-level problem,

0 100 200 300 400 500
Epoch

0.79

0.80

0.81

0.82

0.83

0.84

0.85

Ac
cu

ra
cy

Train acc. Validate acc.

(a) Graph level, binary

0 100 200 300 400 500
Epoch

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

Train acc. Validate acc.

(b) Graph level, multilabel

0 100 200 300 400 500
Epoch

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

Train acc. Validate acc.

(c) Node level, binary

0 100 200 300 400 500
Epoch

0.40

0.45

0.50

0.55

0.60

Ac
cu

ra
cy

Train acc. Validate acc.

(d) Node level, multilabel

Fig. 7. Training of a single model for all workflows.

normal cpu hdd loss

no
rm

al
cp

u
hd

d
lo

ss

0.62 0.1 0.06 0.15

0.17 0.66 0.077 0.071

0.07 0.2 0.77 0.061

0.26 0.11 0.082 0.55

0.0

0.2

0.4

0.6

0.8

1.0

(a) Graph-level

normal cpu hdd loss
no

rm
al

cp
u

hd
d

lo
ss

0.36 0.13 0.17 0.13

0.069 0.58 0.17 0.073

0.058 0.16 0.83 0.089

0.2 0.14 0.19 0.36

0.0

0.2

0.4

0.6

0.8

1.0

(b) Node-level

Fig. 8. Confusion matrix of multilabel classification.

where the last column represents the mixed anomalies to-
gether as a binary classification. Among the three categories,
the HDD-related anomalies are easiest to detect in general,
namely, with higher accuracy than the other two.

Figures 8a and 8b show the confusion matrix, also known
as error matrix, to evaluate the multilabel classification for
the single-model graph-level and node-level classifications,
respectively. The value in each cell indicates the number of
observations known to be in group i and predicted to be in
group j, the higher the better. These results also match our
findings, given in Table IV: the HDD-related anomalies reach
a higher score than the others do (on the diagonal).

E. Anomaly Detection for Different Anomaly Levels

We synthetically generated the anomalies by injecting dif-
ferent levels of anomalies for CPU, HDD, and packet loss.
We show the performance of anomaly detection by levels
in Table V for the graph-level anomaly detection problem.
CPU 2 and 3 indicate the number of cores occupied by stress
tool, HDD 60 and 100 indicate the number of megabytes
continuously written by the stress tool on each worker node,
and Loss 0.5% and 5% indicate the percentage of packet loss
from the network connection. The results meet our expectation
that with higher anomaly levels, the model reaches better
accuracy in classification, as data corresponding to anomalies
are pushed far away from the distribution of normal runs in
the high-dimensional space.

F. Model Comparison

To demonstrate the advantages of taking graph neural
networks for DAG modeling, we compared with standard
machine learning models including the following: (1) support
vector machines (SVMs) with radial basis function kernels

TABLE VI
PERFORMANCE COMPARISON ON 1000GENOME

Model Acc. Recall Prec. F1
SVM 0.622 0.622 0.667 0.550
MLP 0.874 0.874 0.875 0.874
RF 0.898 0.898 0.908 0.887
AlexNet 0.910 0.914 0.910 0.910
VGG-16 0.900 0.900 0.900 0.900
ResNet-18 0.910 0.916 0.910 0.910
Our GNN 0.923 0.929 0.921 0.922

TABLE VII
RUNTIME OF TRAINING DEEP LEARNING MODELS ON 1000GENOMES

Model AlexNet VGG-16 ResNet-18 Our GNN
Runtime (sec.) 251 435 991 142

and C = 1, (2) multilayer perceptron with hidden layers
(128, 128, 128), and (3) random forest (RF) with maximum
depth set to 3. In previous work mentioned in Section I,
Krawczuk et al. [13] took a computer-vision-inspired deep
learning approach by generating Gantt charts from node fea-
tures. To keep the consistency of the data split, we took the
data split as 60%, 20%, and 20% for training, validation, and
testing, respectively, and compared the performance of our
proposed GNN with the computer vision approach in Table VI
on the 1000Genome workflow, including the pretrained models
AlexNet, VGG-16, and ResNet-18 with data augmentation
(rotations, flips, shifts, and augmented noises).

With the additional structural information from the work-
flow, the GNNs outperforms the standard machine learning
models and Gantt charts representation of workflows, because
of their capacity to learn the embedding from local structural
information and node features. We note that all the other
hyperparameters are the same as in Section V-A, without fine-
tuning.

In addition, we measured the training time of the deep
learning approaches to check the efficiency of our proposed
GNN. The results are presented in Table VII. We implemented
the models in PyTorch and trained them with a single NVIDIA
A100 40 GB GPU. Reaping the advantages of aggregating
local neighbors through matrix multiplication, the GNN ap-
proach is much faster than the CNN approaches for training.

VI. CONCLUSION AND FUTURE WORK

In this work we considered workflow anomaly detection
by modeling the workflows as directed acyclic graphs and
using graph neural networks to detect anomalous workflows.

By learning the node features and the local structural informa-
tion, the GNN approach surpasses the conventional machine
learning approaches and computer vision approaches.

Next, we will investigate analysing larger scientific work-
flows in terms of efficiency, and generalizing the models
from one learned workflow to another. Also, since generating
the systematic anomalies is time-consuming, we aim to take
advantage of generative models to create synthetic noise
representing the anomaly scenarios.

VII. ACKNOWLEDGMENTS

This work is funded by the Department of Energy under
the Integrated Computational and Data Infrastructure (ICDI)
for Scientific Discovery, grant #DE-SC0022328. Experimental
data was collected on the ExoGENI testbed supported by
NSF. This material is based upon work supported by the
U.S. Department of Energy, Office of Science, under contract
number DE-AC02-06CH11357.

REFERENCES

[1] I. J. Taylor, E. Deelman, D. B. Gannon, and M. Shields, Workflows for e-
Science: Scientific Workflows for Grids. Springer Publishing Company,
Incorporated, 2014.

[2] E. Deelman, K. Vahi, G. Juve, M. Rynge, S. Callaghan, P. J. Maechling,
R. Mayani, W. Chen, R. Ferreira da Silva, M. Livny, and K. Wenger,
“Pegasus: a workflow management system for science automation,”
Future Generation Computer Systems, vol. 46, pp. 17–35, 2015.

[3] E. Deelman, T. Peterka, I. Altintas, C. D. Carothers, K. K. van Dam,
K. Moreland, M. Parashar, L. Ramakrishnan, M. Taufer, and J. Vetter,
“The future of scientific workflows,” The International Journal of High
Performance Computing Applications, vol. 32, no. 1, pp. 159–175, 2018.

[4] K. D. Moreland, “The future of scientific workflows. report of the doe
ngns/cs scientific workflows workshop (sandia contributions),” Sandia
National Lab.(SNL-NM), Albuquerque, NM (United States), Tech. Rep.,
2015.

[5] E. Deelman, A. Mandal, M. Jiang, and R. Sakellariou, “The role of
machine learning in scientific workflows,” The International Journal of
High Performance Computing Applications, vol. 33, no. 6, pp. 1128–
1139, 2019.

[6] M. A. Rodriguez, R. Kotagiri, and R. Buyya, “Detecting performance
anomalies in scientific workflows using hierarchical temporal memory,”
Future Generation Computer Systems, vol. 88, pp. 624–635, 2018.

[7] F. Li and F. Song, “Building a scientific workflow framework to
enable real-time machine learning and visualization,” Concurrency and
Computation: Practice and Experience, vol. 31, no. 16, p. e4703, 2019.

[8] A. Singh, I. Altintas, M. Schram, and N. Tallent, “Deep learning for
enhancing fault tolerant capabilities of scientific workflows,” in 2018
IEEE International Conference on Big Data (Big Data). IEEE, 2018,
pp. 3905–3914.

[9] G. Papadimitriou, M. Kiran, C. Wang, A. Mandal, and E. Deelman,
“Training classifiers to identify TCP signatures in scientific workflows,”
in 2019 IEEE/ACM Innovating the Network for Data-Intensive Science
(INDIS). Los Alamitos, CA, USA: IEEE Computer Society, nov 2019,
pp. 61–68. [Online]. Available: https://doi.ieeecomputersociety.org/10.
1109/INDIS49552.2019.00012

[10] R. Stevens, V. Taylor, J. Nichols, A. B. Maccabe, K. Yelick, and
D. Brown, “AI for Science,” Argonne National Lab.(ANL), Argonne,
IL (United States), Tech. Rep., 2020.

[11] C. Wang, G. Papadimitriou, M. Kiran, A. Mandal, and E. Deelman,
“Identifying execution anomalies for data intensive workflows using
lightweight ML techniques,” in 2020 IEEE High Performance Extreme
Computing Conference (HPEC). IEEE, 2020, pp. 1–7.

[12] P. Gaikwad, A. Mandal, P. Ruth, G. Juve, D. Król, and E. Deelman,
“Anomaly detection for scientific workflow applications on networked
clouds,” in 2016 International Conference on High Performance Com-
puting & Simulation (HPCS). IEEE, 2016, pp. 645–652.

[13] P. Krawczuk, G. Papadimitriou, S. Nagarkar, M. Kiran, A. Mandal,
and E. Deelman, “Anomaly detection in scientific workflows using end-
to-end execution Gantt charts and convolutional neural networks,” in
Practice and Experience in Advanced Research Computing, 2021, pp.
1–5.

[14] “National Energy Research Scientific Computing Center (NERSC),”
https://www.nersc.gov.

[15] “Oak Ridge Leadership Computing Facility (OLCF),” https://www.olcf.
ornl.gov.

[16] J. Towns, T. Cockerill, M. Dahan, I. Foster, K. Gaither, A. Grimshaw,
V. Hazlewood, S. Lathrop, D. Lifka, G. D. Peterson, R. Roskies, J. Scott,
and N. Wilkins-Diehr, “XSEDE: Accelerating scientific discovery,”
Computing in Science & Engineering, vol. 16, no. 05, pp. 62–74, sep
2014.

[17] R. Pordes, D. Petravick, B. Kramer, D. Olson, M. Livny, A. Roy,
P. Avery, K. Blackburn, T. Wenaus, F. Würthwein, I. Foster, R. Gardner,
M. Wilde, A. Blatecky, J. McGee, and R. Quick, “The open science
grid,” Journal of Physics: Conference Series, vol. 78, p. 012057,
jul 2007. [Online]. Available: https://doi.org/10.1088%2F1742-6596%
2F78%2F1%2F012057

[18] SciTech, “Pegasus panorama,” https://github.com/pegasus-isi/pegasus/
tree/panorama.

[19] G. Papadimitriou, C. Wang, K. Vahi, R. Ferreira da Silva, A. Mandal,
L. Zhengchun, R. Mayani, M. Rynge, M. Kiran, V. E. Lynch,
R. Kettimuthu, E. Deelman, J. S. Vetter, and I. Foster, “End-to-end
online performance data capture and analysis for scientific workflows,”
Future Generation Computer Systems, vol. 117, pp. 387 – 400,
2021. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0167739X20330570

[20] “ELK stack,” https://www.elastic.co/elk-stack, 2018.
[21] M. Welling and T. N. Kipf, “Semi-supervised classification with graph

convolutional networks,” in J. International Conference on Learning
Representations (ICLR 2017), 2016.

[22] 1000 Genomes Project Consortium, “A global reference for human
genetic variation,” Nature, vol. 526, no. 7571, pp. 68–74, 2012.

[23] R. Ferreira da Silva, R. Filgueira, E. Deelman, E. Pairo-Castineira,
I. M. Overton, and M. Atkinson, “Using simple PID-inspired controllers
for online resilient resource management of distributed scientific work-
flows,” Future Generation Computer Systems, vol. 95, pp. 615–628,
2019.

[24] E. Ruzanski and V. Chandrasekar, “Weather radar data interpolation us-
ing a kernel-based lagrangian nowcasting technique,” IEEE Transactions
on Geoscience and Remote Sensing, vol. 53, no. 6, pp. 3073–3083, June
2015.

[25] “Collaborative Adaptive Sensing of the Atmosphere,” http://www.casa.
umass.edu/.

[26] E. Lyons, G. Papadimitriou, C. Wang, K. Thareja, P. Ruth, J. Villalobos,
I. Rodero, E. Deelman, M. Zink, and A. Mandal, “Toward a dynamic
network-centric distributed cloud platform for scientific workflows: A
case study for adaptive weather sensing,” in 15th International Confer-
ence on eScience (eScience), 2019, pp. 67–76.

[27] I. Baldin, J. Chase, Y. Xin, A. Mandal, P. Ruth, C. Castillo, V. Or-
likowski, C. Heermann, and J. Mills, “ExoGENI: A multi-domain
infrastructure-as-a-service testbed,” in The GENI Book, R. McGeer,
M. Berman, C. Elliott, and R. Ricci, Eds. Springer International
Publishing, 2016, pp. 279–315.

[28] B. Hubert, T. Graf, G. Maxwell, R. van Mook, M. van Oosterhout,
P. Schroeder, J. Spaans, and P. Larroy, “Linux advanced routing & traffic
control,” in Ottawa Linux Symposium, vol. 213, 2002.

[29] A. Waterland, “stress, POSIX workload generator,” 2013.
[30] D. Chen, Y. Lin, W. Li, P. Li, J. Zhou, and X. Sun, “Measuring and

relieving the over-smoothing problem for graph neural networks from the
topological view,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 34, no. 04, 2020, pp. 3438–3445.

https://doi.ieeecomputersociety.org/10.1109/INDIS49552.2019.00012
https://doi.ieeecomputersociety.org/10.1109/INDIS49552.2019.00012
https://www.nersc.gov
https://www.olcf.ornl.gov
https://www.olcf.ornl.gov
https://doi.org/10.1088%2F1742-6596%2F78%2F1%2F012057
https://doi.org/10.1088%2F1742-6596%2F78%2F1%2F012057
https://github.com/pegasus-isi/pegasus/tree/panorama
https://github.com/pegasus-isi/pegasus/tree/panorama
http://www.sciencedirect.com/science/article/pii/S0167739X20330570
http://www.sciencedirect.com/science/article/pii/S0167739X20330570
https://www.elastic.co/elk-stack
http://www.casa.umass.edu/
http://www.casa.umass.edu/

	Introduction
	Workflow Model
	GNN Model for Anomaly Detection
	Experimental Setup
	Representative Workflows
	Task Clustering
	Data Collection
	Injecting Anomalies
	Workflow Data Collection

	Evaluation of the GNN Model for Anomaly Detection
	Model Setup and Metrics
	Graph-Level Anomaly Detection
	Node-Level Anomaly Detection
	Anomaly Detection by Category
	Anomaly Detection for Different Anomaly Levels
	Model Comparison

	Conclusion and Future Work
	Acknowledgments
	References

