
Anomaly Detection in Scientific Workflows using End-to-End
Execution Gantt Charts and Convolutional Neural Networks

Patrycja Krawczuk
krawczuk@isi.edu

University of Southern California
USA

George Papadimitriou
georgpap@isi.edu

University of Southern California
USA

Shubham Nagarkar
slnagark@usc.edu

University of Southern California
USA

Mariam Kiran
mkiran@es.net

Energy Sciences Network (ESnet)
Lawrence Berkeley National Lab

USA

Anirban Mandal
anirban@renci.org

RENCI, University of North Carolina
Chapel Hill

USA

Ewa Deelman
deelman@isi.edu

University of Southern California
USA

ABSTRACT
Fundamental progress towards reliable modern science depends
on accurate anomaly detection during application execution. In
this paper, we suggest a novel approach to tackle this problem
by applying Convolutional Neural Network (CNN) classification
methods to high-resolution visualizations that capture the end-to-
end workflow execution timeline. Subtle differences in the timeline
reveal information about the performance of the application and
infrastructure’s components. We collect 1000 traces of a scientific
workflow’s executions. We explore and evaluate the performance
of CNNs trained from scratch and pre-trained on ImageNet [7]. Our
initial results are promising with over 90% accuracy.

CCS CONCEPTS
•Computingmethodologies→Computer vision;Neural net-
works; • General and reference → Reliability.

KEYWORDS
Scientific Workflows, Gantt Charts, Anomaly Detection, Convolu-
tional Neural Networks
ACM Reference Format:
Patrycja Krawczuk, George Papadimitriou, Shubham Nagarkar, Mariam
Kiran, Anirban Mandal, and Ewa Deelman. 2021. Anomaly Detection in
Scientific Workflows using End-to-End Execution Gantt Charts and Convo-
lutional Neural Networks. In Practice and Experience in Advanced Research
Computing (PEARC ’21), July 18–22, 2021, Boston, MA, USA. ACM, New York,
NY, USA, 5 pages. https://doi.org/10.1145/3437359.3465597

1 INTRODUCTION
Modern scientific experiments are conducted on complex, large-
scale, distributed high-performance infrastructure like DOE Lead-
ership Computing Facilities (e.g., OLCF [2]). Even though these
systems are designed with reliability in mind [25], they can expe-
rience anomalies ranging from subtle (e.g. network performance

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
PEARC ’21, July 18–22, 2021, Boston, MA, USA
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8292-2/21/07.
https://doi.org/10.1145/3437359.3465597

degradation) to critical (e.g., file system integrity errors) [20], affect-
ing the performance of the applications leveraging their resources
and increasing the chances of failures.

Workflowmanagement systems have emerged as very important
tools for managing the execution of science applications. Automa-
tion, reproducibility, resiliency and monitoring are some of key
advantages they can provide. However, anomalies remain a signifi-
cant barrier to the reliable execution of scientific workflows at scale.
It is still difficult to understand subtle anomalies that impact per-
formance, and provide useful feedback to users and administrators.

In this article we introduce a novel approach to detect anomalies
in scientific workflow traces, leveraging advances in computer vi-
sion. We make the following contributions: (1) introduce a method
to compute and visualize end-to-end workflow execution timelines
(Gantt charts) from workflow traces, (2) explore and evaluate dif-
ferent CNN architectures when applied to the Gantt chart anomaly
detection problem, and (3) investigate whether transfer learning
from pre-trained models on ImageNet [7] leads to better accuracy.

2 BACKGROUND
2.1 Pegasus Workflow Management System
Pegasus [6] is a popular workflow management system that en-
ables users to design workflows at a high-level of abstraction. The
workflow descriptions are independent of the resources available
to execute the workflow tasks and are also independent of the lo-
cation of data and executables. Pegasus transforms these abstract
workflows into executable workflows that can be deployed onto dis-
tributed and high-performance computing resources such as DOE
Leadership Computing Facilities (e.g., NERSC [1] and OLCF [2]),
shared computing resources (e.g., XSEDE [29], OSG [18]), local clus-
ters, and academic and commercial clouds. During the compilation
process, Pegasus performs data discovery, locating input data files
and executables. During execution, Pegasus offloads the workflow
tasks to HTCondor [28], a comprehensive job management system.

2.2 Deep Learning Methods for Computer
Vision

2.2.1 Convolutional Neural Network (CNN). Convolutional Neural
Network is a type of deep learning architecture. CNNs automati-
cally extract relevant hierarchical features from image data. The

https://doi.org/10.1145/3437359.3465597
https://doi.org/10.1145/3437359.3465597

PEARC ’21, July 18–22, 2021, Boston, MA, USA Krawczuk, et al.

network consists of sequences of layers like convolutions, pooling,
and normalization layers with nonlinear units between them. The
layers in the sequence learn progressively abstract representations
of the input data [15]. CNNs progressively downsample the spatial
resolution of an image while increasing the depth of their feature
maps. The lower level layers identify simple aspects of training
data like edges, curves, corners while the upper layers of a model
combine these features and create complex and objective-specific
representations. CNNs achieve excellent performance on a number
of important computer vision tasks ([27], [31]).

2.2.2 Transfer Learning with CNNs. Transfer Learning is a design
methodology that transfers knowledge of a model trained on a large-
scale, well-annotated dataset in one domain, to a target domain,
where labeled data is scarce [32]. The pre-trained model can be used
as a feature extractor by keeping the model’s weights fixed (frozen)
except for the final fully connected layers, which are randomly
initialized. Alternatively, the model can be fine-tuned by initializing
its weights based on pre-training and allowing some of the last
layers in the architecture to remain updatable. These weights are
updated during each training iteration to fit the dataset in a target
domain. This method often proves to be faster than training a
network with randomly initialized weights.

3 DATASET
To conduct our analysis we collect traces of the 1000 Genome
Pegasus workflow [21], under normal and synthetic anomalous
conditions, and we label each run with the corresponding type.
We then create a methodology to parse the generated traces and
produce detailed Gantt charts capturing the entire life-cycle of a
workflow.

3.1 1000 Genome Pegasus Workflow
This Pegasus workflow is based on the 1000 Genomes project, which
provides a reference for human variation, having reconstructed the
genomes of 2,504 individuals across 26 different populations [4].
The workflow identifies mutational overlaps using data from the
1000 Genomes project in order to provide a null distribution for
rigorous statistical evaluation of potential disease-related muta-
tions [10]. Figure 1 depicts the workflow structure and is composed
of five different tasks: (1) individuals – fetches and parses the Phase
3 data from the 1000 genomes project per chromosome; (2) popu-
lations – fetches and parses five super populations and a set of all
individuals; (3) sifting – computes the SIFT scores of all of the SNPs
(single nucleotide polymorphisms) variants, as computed by the
Variant Effect Predictor; (4) pair overlap mutations – measures the
overlap in mutations (SNPs) among pairs of individuals; and (5) fre-
quency overlap mutations – calculates the frequency of overlapping
mutations across subsamples of certain individuals.

3.2 Execution Environment
To execute the 1000 Genome workflow we provision resources
from the ExoGENI [5] testbed, which included 7 virtual machines (1
submit node, 5 worker nodes and 1 data node). The worker nodes are
located within the same ExoGENI region, while the submit node and
the data node are located in a different region. Each virtual machine
had 4 2.2 Ghz vCPUs, 10 GB RAM and 75 GB storage, and the

...c1 c2 c3 c4 c22 ...s1 s2 s3 s4 s22...p1 p2 pn

... fc 2505fc 1 fs 3fp 1 fp 2 fp n...

...m1 m2 m3 m154 ...fr1 fr2 fr3 fr154

i 3 pop 2 sh 3

om 1

Data Preparation
Populations Sifting

Individuals
1000 Genome Populations Sifting

Pair
Overlap

Mutations

Individuals

Analysis

ofm 1

Input Data

Output Data fom 2 fog 2

Frequency
Overlap

Mutations

Figure 1: Overview of the 1000Genome Pegasus workflow.

connectivity between the two ExoGENI regions is established over
a high speed layer 2 VLAN. To facilitate the workflow execution
we configure our nodes with Pegasus and HTCondor, and on the
data node we install a web server to serve files over HTTP.

3.3 Injecting Anomalies
To introduce synthetic network and I/O anomalies we use the Linux
Traffic Control (TC) tool-set [12]. TC is able to replicate network
anomalies such as delay, packet loss and jitter, by configuring the
Linux kernel packet scheduler. Additionally, in order to reduce
the performance of the worker nodes, we use Stress [30], a simple
workload generator that can impose configurable amount of CPU,
memory, I/O, and disk stress on the system.

3.4 Workflow Data Collection
For the data collection we use the Pegasus Panorama branch [22].
This Pegasus branch offers advanced monitoring capabilities over
the stable Pegasus release. Panorama [17] enables end-to-end on-
line workflow execution monitoring and provides execution traces
of the computational tasks, statistics for individual transfers and in-
frastructure related metrics, which get stored into an Elasticsearch
instance [3].
During our data collection we generate 1000 traces of the 1000
Genome Pegasus workflow for 4 main classes as seen in Table 1.
Examples of how these anomalies affect the workflow execution
can be found in prior work [17].

Normal. No anomaly introduced - optimal conditions
CPU. 2 - 3 cores are occupied by stress tool on each worker node
HDD. 50 - 100 megabytes are continuously written by stress tool
on each worker node
Loss. The network connection between the two ExoGENI
regions is experiencing 0.1% - 5.0% of packet loss

3.5 Data Transformation into Gantt Charts
To generate our final dataset in the form of Gantt charts, we parse
the generated Pegasus logs and the collected data in Elasticsearch,
and we calculate delays, time spent transferring data, and time
spent on computation for each individual job of every workflow
run. More specifically each job timeline consists of the following
phases:

Ready time. Timestamp since the beginning of the workflow,
where all dependencies have been met and job can be dispatched
Pre script delay. Time spent on a script that is executed before
job submission (if it exists)
WMS delay. Time spent by the workflow management system
to prepare and submit the job

Anomaly Detection in Scientific Workflows using End-to-End Execution Gantt Charts and Convolutional Neural Networks PEARC ’21, July 18–22, 2021, Boston, MA, USA

Table 1: Collected traces for each label.

Labels Normal CPU HDD Loss
2 3 50 60 70 80 90 100 0.1% 0.5% 1.0% 3.0% 5.0%

Traces 250 125 125 67 37 35 31 31 49 50 50 50 50 50

Queue delay. Time spent in the queue waiting for resources
Stage in delay. Time spent transferring input data
Runtime. Time spent during computation
Stage out delay. Time spent transferring data to the
intermediate scratch directory or final output directory
Post script delay. Time spent on a script executed after job
indent exits (e.g., WMS parses stdout and exit code)
Completion time. Timestamp marking job completion, since
beginning of workflow

Finally, using the above job timelines, we create one Gantt chart
for each workflow executed (1000 Gantt charts) and we visualize
them as shown in Figure 2 as high-resolution images (3875 by 3875
pixels).

4 APPROACH
Having generated the high-resolution visualizations of the Gantt
charts we aim to leverage advances in computer vision, such as
CNN and their ability to automatically extract relevant hierarchical
features from images, and to classify the different types of anomalies
we introduced. We also investigate the transferability of natural
image features to our classification problem via transfer learning.

4.1 Data Manipulation
Image Preprocessing. Throughout our experiments we resize all
the generated Gantt chart images to 512 by 512 pixels using bilin-
ear interpolation, in order to reduce processing time and memory
requirements.
Data Split. We keep a consistent data split across all of the experi-
ments: the training set contains 80% of the data, while the validation
and the testing sets contain 10% each.
Data Augmentation. To increase the robustness of our models
and prevent overfitting we explore a number of data augmentation
techniques [23]. We experiment with rotations, flips, shifts, and
add noise. However, in our final experiments (Section 5), we only
apply horizontal flips and jitter, since these transformations keep

Figure 2: A visualized Gantt chart from one of the 1000
Genome workflow executions.

Table 2: Performance of simple CNNs trained from scratch.

Model Acc. Recall Prec. F-score Time (s)
our CNN 0.900 0.900 0.907 0.900 77.09

our CNN+aug 0.870 0.870 0.885 0.869 77.85

the semantic information intact and do not dramatically degrade
the performance of our models.

4.2 Architectures
4.2.1 Simple Convolutional Neural Network (CNN). We design a
simple CNN architecture and train it from scratch. Our network
consists of a sequence of 5 convolutional layers with Leaky Rectified
Linear Unit (LeakyReLU) activations and 2D batch normalization
layers between them. The head of the network comprises of 3 linear
layers interwoven with ReLU activations and dropout layers [26].
We initialize the weights of the model with random Gaussian distri-
bution.We employ the Adam [13] optimizer and early stoppingwith
patience of 4. The other hyperparameters are learning rate:10−4and
dropout rate: 0.4.

4.2.2 CNN with Transfer Learning. In this set of experiments, we
investigate whether CNNs architectures trained on a large-scale,
well-annotated dataset of natural images (ImageNet [7]) can support
the classification of anomalies in the Gantt charts. We explore three
progressively more complex models: AlexNet [14], VGG-16 [24],
and ResNet-18 [11]. First, we replace the last classification layers
in the architectures with two fully connected layers separated by
ReLU activations, 1D batch normalization, and dropout layers. We
adjust the architecture to fit our classification problem, with the
final output of 4 classes. During training, we vary the number of
transferred layers in which weights are frozen.

For all the pre-trained experiments we employ the Adam opti-
mizer, early stopping with patience of 4 and batch size of 16. We
fine-tuned the pre-trained layers with learning rate of 10−8 and
train fully connected layers with learning rate of 10−6.

5 EXPERIMENTAL RESULTS
In this section, we present an evaluation of our anomaly detection
approach using the CNN models described in Section 4.2. Besides
performance statistics like accuracy, recall or precision we record
training time until convergence for all of our experiments.

5.1 Simple CNN Trained from Scratch
The results of experiments with simple CNN architecture trained
from scratch are displayed in Table 2. We observe that adding data
augmentation methods like horizontal flips and jitter lowers the
performance of the model. As shown in Figure 4, the validation
error continues to decrease with the training error until epoch 8 for
training without data augmentation and epoch 7 for experiment

PEARC ’21, July 18–22, 2021, Boston, MA, USA Krawczuk, et al.

Figure 3: Confusion matrices and training curves for the simple model trained from scratch and pre-trained models.

Figure 4: Loss curves for simple CNN model train without
and with data augmentation.

with data augmentation. The loss curves for experiment with aug-
mented data is slightly smoother but it ultimately leads to lower
accuracy. This behavior could be attributed to small inter-class
differences and the highly specific structure of our Gantt chart
dataset.

Table 3: Performance of pre-trained models (fine-tuned).

Model Acc. Recall Prec. F-score Time (s)
Without Data Augmentation

AlexNet 0.910 0.910 0.918 0.910 222.75
VGG-16 0.910 0.910 0.916 0.910 283.42
ResNet-18 0.880 0.880 0.881 0.879 320.43

With Data Augmentation
AlexNet 0.910 0.910 0.918 0.910 268.83
VGG-16 0.930 0.930 0.916 0.930 288.41
ResNet-18 0.890 0.890 0.900 0.890 325.52

5.2 CNN with Transfer Learning
In Table 3 we present results for AlexNet, VGG-16 and ResNet-
18. The models are pre-trained on the ImageNet dataset, which is
diverse and distinctly different from our synthetically developed
Gantt chart images. We perform experiments with different hy-
perparameters and vary the number of transferred layers. We are
able to achieve a 1% increase in accuracy compared to training the
simple CNN from scratch. Among the pre-trained models, ResNet-
18 is the most complex with 11M parameters. We notice a slight
degradation in the performance of ResNet-18 in comparison with
AlexNet or VGG-16. This is due to the limited quantity of data that
is insufficient to utilize bigger architectures.

In contrast to our simple CNN trained from scratch, the addition
of horizontal flips and jitter does not degrade the performance
of the pre-trained models. The data augmentation does not affect

the accuracy of AlexNet and ResNet-18, however, it improves the
accuracy of VGG-16. The pre-trained models are more robust and
have a better understanding of data transformations due to their
extensive prior knowledge.

During the evaluation, our simple CNN, AlexNet, and VGG-16
achieve 100% accuracy when detecting CPU-related anomalies. All
of the models can identify the normal runs (without any anom-
alies) with an accuracy of at least 92%. The misclassification errors
are most common between normal runs and packet loss injected
anomalies as seen in Figure 3. This interference influences the char-
acteristics of the traces subtly and it is hard to identify by our model.
More data might be needed to improve performance.

Our simple CNN network is lightweight and takes only 77.09
seconds to train on GeFore RTX 3090 GPU with 24 GB memory.
The pre-trained models are able to achieve slightly higher accuracy
and exhibit better robustness to data transformations. However,
fine-tuning VGG-16 or ResNet-18 on high-resolution images (512
by 512 pixels) is 3 to 4 times slower (Table 3) and more resource
intensive.

Based on our results, both training from scratch and transfer
learning are promising methods that should be futher tested on
larger and more diverse Gantt chart dataset.

6 RELATEDWORK
Many statistical and deep learning based anomaly detection meth-
ods have been proposed ([16], [19], [8], [9]). In [19], the authors
propose hierarchical temporal memory based method for perfor-
mance anomaly detection. Du et al. [9], utilize Long Short-Term
Memory (LSTM) deep learning network to identify anomalies based
on data in log files. In [8], the authors develop RAMP (Real-Time
Aggregated Matrix Profile) for real-time anomaly detection. RAMP
uses time series data generated by events in scientificworkflows and
a technique called Matrix Profile to detect anomalous behaviours.
Our work is the first to apply computer vision methods and identify
anomalies in scientific workflow execution traces.

7 FUTUREWORK
We plan to increase the size of our dataset by collecting end-to-
end execution timelines of other scientific workflows. We aim to
explore more advanced deep learning methods like Convolutional
Autoencoders or contrastive learning and investigate correctness
of our models through explainable AI methodologies.

Anomaly Detection in Scientific Workflows using End-to-End Execution Gantt Charts and Convolutional Neural Networks PEARC ’21, July 18–22, 2021, Boston, MA, USA

ACKNOWLEDGMENTS
This work was funded by DOE contract #DESC0012636M,
“Panorama 360: Performance Data Capture and Analysis for End-
to-end Scientific Workflows”.

REFERENCES
[1] National Energy Research Scientific Computing Center (NERSC). https://www.

nersc.gov.
[2] Oak Ridge Leadership Computing Facility (OLCF). https://www.olcf.ornl.gov.
[3] ELK Stack. https://www.elastic.co/elk-stack.
[4] 1000 Genomes Project Consortium. 2012. A global reference for human genetic

variation. Nature 526, 7571 (2012), 68–74.
[5] Ilya Baldin, Jeff Chase, Yufeng Xin, Anirban Mandal, Paul Ruth, Claris Castillo,

Victor Orlikowski, Chris Heermann, and Jonathan Mills. 2016. ExoGENI: A Multi-
Domain Infrastructure-as-a-Service Testbed. In The GENI Book, Rick McGeer,
Mark Berman, Chip Elliott, and Robert Ricci (Eds.). Springer International Pub-
lishing, 279–315.

[6] Ewa Deelman, Karan Vahi, Gideon Juve, Mats Rynge, Scott Callaghan, Philip J
Maechling, Rajiv Mayani, Weiwei Chen, Rafael Ferreira da Silva, Miron Livny,
and Kent Wenger. 2015. Pegasus: a Workflow Management System for Science
Automation. Future Generation Computer Systems 46 (2015), 17–35. https:
//doi.org/10.1016/j.future.2014.10.008

[7] J. Deng, W. Dong, R. Socher, L. Li, Kai Li, and Li Fei-Fei. 2009. ImageNet: A large-
scale hierarchical image database. In 2009 IEEE Conference on Computer Vision
and Pattern Recognition. 248–255. https://doi.org/10.1109/CVPR.2009.5206848

[8] J. Dinal Herath, C. Bai, G. Yan, P. Yang, and S. Lu. 2019. RAMP: Real-TimeAnomaly
Detection in Scientific Workflows. In 2019 IEEE International Conference on Big
Data (Big Data). 1367–1374. https://doi.org/10.1109/BigData47090.2019.9005653

[9] Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar. 2017. DeepLog: Anomaly
Detection and Diagnosis from System Logs through Deep Learning (CCS ’17).
Association for Computing Machinery, New York, NY, USA, 14. https://doi.org/
10.1145/3133956.3134015

[10] Rafael Ferreira da Silva, Rosa Filgueira, Ewa Deelman, Erola Pairo-Castineira,
Ian Michael Overton, and Malcolm Atkinson. 2019. Using Simple PID-inspired
Controllers for Online Resilient Resource Management of Distributed Scientific
Workflows. Future Generation Computer Systems 95 (2019), 615–628. https:
//doi.org/10.1016/j.future.2019.01.015

[11] KaimingHe, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning
for Image Recognition. arXiv:cs.CV/1512.03385

[12] Bert Hubert, Thomas Graf, Greg Maxwell, Remco van Mook, Martijn van Oost-
erhout, P Schroeder, Jasper Spaans, and Pedro Larroy. 2002. Linux advanced
routing & traffic control. In Ottawa Linux Symposium, Vol. 213.

[13] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-
mization. CoRR abs/1412.6980 (2015).

[14] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifi-
cation with deep convolutional neural networks. Advances in neural information
processing systems 25 (2012), 1097–1105.

[15] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep Learning. Nature
521, 7553 (2015), 436–444. https://doi.org/10.1038/nature14539

[16] A. Mandal, P. Ruth, I. Baldin, D. Krol, G. Juve, R. Mayani, R. F. Da Silva, E.
Deelman, J. Meredith, J. Vetter, V. Lynch, B. Mayer, J. Wynne, M. Blanco, C.
Carothers, J. Lapre, and B. Tierney. 2016. Toward an End-to-End Framework
for Modeling, Monitoring and Anomaly Detection for Scientific Workflows. In
2016 IEEE International Parallel and Distributed Processing Symposium Workshops
(IPDPSW). 1370–1379. https://doi.org/10.1109/IPDPSW.2016.202

[17] George Papadimitriou, Cong Wang, Karan Vahi, Rafael Ferreira da Silva, Anirban
Mandal, Liu Zhengchun, Rajiv Mayani, Mats Rynge, Mariam Kiran, Vickie E.
Lynch, Rajkumar Kettimuthu, Ewa Deelman, Jeffrey S. Vetter, and Ian Foster.
2021. End-to-End Online Performance Data Capture and Analysis for Sci-
entific Workflows. Future Generation Computer Systems 117 (2021), 387–400.
https://doi.org/10.1016/j.future.2020.11.024 Funding Acknowledgments: DOE
DE-SC0012636.

[18] Ruth Pordes, Don Petravick, Bill Kramer, Doug Olson, Miron Livny, Alain Roy,
Paul Avery, Kent Blackburn, Torre Wenaus, Frank Würthwein, Ian Foster, Rob
Gardner, Mike Wilde, Alan Blatecky, John McGee, and Rob Quick. 2007. The
open science grid. Journal of Physics: Conference Series 78 (jul 2007), 012057.
https://doi.org/10.1088/1742-6596/78/1/012057

[19] Maria A. Rodriguez, Ramamohanarao Kotagiri, and Rajkumar Buyya. 2018.
Detecting performance anomalies in scientific workflows using hierarchical
temporal memory. Future Generation Computer Systems 88 (2018), 624–635.
https://doi.org/10.1016/j.future.2018.05.014

[20] Mats Rynge, Karan Vahi, Ewa Deelman, Anirban Mandal, Ilya Baldin, Omkar
Bhide, Randy Heiland, Von Welch, Raquel Hill, William L. Poehlman, and F. Alex
Feltus. 2019. Integrity Protection for Scientific Workflow Data: Motivation and
Initial Experiences. In Proceedings of the Practice and Experience in Advanced

Research Computing on Rise of the Machines (Learning) (Chicago, IL, USA) (PEARC
’19). ACM, New York, NY, USA, Article 17, 8 pages. https://doi.org/10.1145/
3332186.3332222 Funding Acknowledgments: NSF 1642070, NSF 1642053, NSF
1642090. Best Paper in Advanced Research Computing Software and Applications
Track. The Phil Andrews Most Transformative Contribution Award.

[21] SciTech. Pegasus 1000 Genome Workflow. https://github.com/pegasus-isi/
1000genome-workflow.

[22] SciTech. Pegasus Panorama. https://github.com/pegasus-isi/pegasus/tree/
panorama.

[23] Connor Shorten and Taghi M Khoshgoftaar. 2019. A survey on image data
augmentation for deep learning. Journal of Big Data 6, 1 (2019), 1–48.

[24] Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks
for Large-Scale Image Recognition. arXiv:cs.CV/1409.1556

[25] Marc Snir, Robert W Wisniewski, Jacob A Abraham, Sarita V Adve, Saurabh
Bagchi, Pavan Balaji, Jim Belak, Pradip Bose, Franck Cappello, Bill Carlson, An-
drew A Chien, Paul Coteus, Nathan A Debardeleben, Pedro C Diniz, Christian
Engelmann, Mattan Erez, Saverio Fazzari, Al Geist, Rinku Gupta, Fred Johnson,
Sriram Krishnamoorthy, Sven Leyffer, Dean Liberty, Subhasish Mitra, Todd Mun-
son, Rob Schreiber, Jon Stearley, and Eric Van Hensbergen. 2014. Addressing
Failures in Exascale Computing. Int. J. High Perform. Comput. Appl. 28, 2 (May
2014), 129–173. https://doi.org/10.1177/1094342014522573

[26] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. 2014. Dropout: A Simple Way to Prevent Neural Networks from
Overfitting. J. Mach. Learn. Res. 15, 1 (Jan. 2014), 1929–1958.

[27] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going
Deeper with Convolutions. arXiv:cs.CV/1409.4842

[28] Douglas Thain, Todd Tannenbaum, andMiron Livny. 2005. Distributed computing
in practice: the Condor experience. Concurr. Comput. 17, 2-4 (Feb. 2005), 323–356.

[29] J. Towns, T. Cockerill, M. Dahan, I. Foster, K. Gaither, A. Grimshaw, V. Hazlewood,
S. Lathrop, D. Lifka, G. D. Peterson, R. Roskies, J. Scott, and N.Wilkins-Diehr. 2014.
XSEDE: Accelerating Scientific Discovery. Computing in Science & Engineering
16, 05 (sep 2014), 62–74. https://doi.org/10.1109/MCSE.2014.80

[30] Amos Waterland. stress, POSIX workload generator.
[31] HuikaiWu, Junge Zhang, Kaiqi Huang, Kongming Liang, and Yizhou Yu. FastFCN:

Rethinking Dilated Convolution in the Backbone for Semantic Segmentation.
arXiv:cs.CV/1903.11816

[32] F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong, and Q. He. 2021. A
Comprehensive Survey on Transfer Learning. Proc. IEEE 109, 1 (2021), 43–76.
https://doi.org/10.1109/JPROC.2020.3004555

https://www.nersc.gov
https://www.nersc.gov
https://www.olcf.ornl.gov
https://www.elastic.co/elk-stack
https://doi.org/10.1016/j.future.2014.10.008
https://doi.org/10.1016/j.future.2014.10.008
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/BigData47090.2019.9005653
https://doi.org/10.1145/3133956.3134015
https://doi.org/10.1145/3133956.3134015
https://doi.org/10.1016/j.future.2019.01.015
https://doi.org/10.1016/j.future.2019.01.015
https://arxiv.org/abs/cs.CV/1512.03385
https://doi.org/10.1038/nature14539
https://doi.org/10.1109/IPDPSW.2016.202
https://doi.org/10.1016/j.future.2020.11.024
https://doi.org/10.1088/1742-6596/78/1/012057
https://doi.org/10.1016/j.future.2018.05.014
https://doi.org/10.1145/3332186.3332222
https://doi.org/10.1145/3332186.3332222
https://github.com/pegasus-isi/1000genome-workflow
https://github.com/pegasus-isi/1000genome-workflow
https://github.com/pegasus-isi/pegasus/tree/panorama
https://github.com/pegasus-isi/pegasus/tree/panorama
https://arxiv.org/abs/cs.CV/1409.1556
https://doi.org/10.1177/1094342014522573
https://arxiv.org/abs/cs.CV/1409.4842
https://doi.org/10.1109/MCSE.2014.80
https://arxiv.org/abs/cs.CV/1903.11816
https://doi.org/10.1109/JPROC.2020.3004555

	Abstract
	1 Introduction
	2 Background
	2.1 Pegasus Workflow Management System
	2.2 Deep Learning Methods for Computer Vision

	3 Dataset
	3.1 1000 Genome Pegasus Workflow
	3.2 Execution Environment
	3.3 Injecting Anomalies
	3.4 Workflow Data Collection
	3.5 Data Transformation into Gantt Charts

	4 Approach
	4.1 Data Manipulation
	4.2 Architectures

	5 Experimental Results
	5.1 Simple CNN Trained from Scratch
	5.2 CNN with Transfer Learning

	6 Related Work
	7 Future Work
	Acknowledgments
	References

