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Abstract—Scientific workflows are one of the well-established
pillars of modern large-scale computational science. More re-
cently, scientists have started to leverage machine learning (ML)
capabilities in their workflows, leading to a new category of
scientific workflows, denoted as scientific ML workflows. ML
is not only about training and inference, modern ML workflows
also involve complex data processing steps before the training
can start, which are not often accounted for in most performance
studies. In this work, we consider scientific ML workflows, from
data pre-processing to training, inference, and model evaluation.
We aim to explore (i) how scientific ML workflows differ
from more traditional scientific workflows and; (ii) how we can
characterize ML workflows both in terms of execution time and
data movements when executing on a target cloud platform. We
select three representative workflows, ranging from image classi-
fication to natural language processing and image segmentation,
which have been executed using the academic cloud platform,
Chameleon. We build four realistic deployment scenarios for
each workflow, which stress data movements during workflow
executions. Then, we compare the performance observed when
utilizing these different configurations and study how different
settings impact overall workflows performance and efficiency
when running on cloud infrastructures. Finally, we summarize
our findings and discuss performance impacts when augmenting
scientific workflows with ML techniques and how traditional
workflow management systems can improve their support for
such workflows.

Index Terms—scientific workflows, machine learning, cloud,
data movements, performance characterization

I. INTRODUCTION

Scientific workflows are widely-used abstractions to rep-
resent complex computational processes [1]. Scientific work-
flows (shortened as workflows in this work) describe the
computational tasks to execute, relative order in which they
have to be executed, and how data movements need to be
performed. Workflows have played a key role in advancing
science by allowing scientists to orchestrate computations
at massive scales, from cancer research [2] to molecular
dynamics [3]. Traditionally, workflows are modeled as directed
acyclic graphs whose vertices represent computational tasks
and edges represent data dependencies between tasks [4].

¶Equal contribution

Many workflow management systems (WMS) have been de-
veloped ([5], [6]) during the last two decades to express, man-
age and execute these workflows on distributed infrastructures,
high-performance computing (HPC) systems, or clouds. In this
paper, we focus on their execution on clouds.

Traditionally, workflows have been used by domain scien-
tists to run large-scale computations. However, the landscape
of scientific workflows is rapidly evolving as scientists rely
more on machine learning (ML) techniques to model systems
and analyze data. This trend, coined as scientific machine
learning (SciML) [7] by the U.S. Department of Energy has
been adopted widely within the scientific community. How-
ever, it is the industry that has been driving ML frameworks
development (e.g., PyTorch, TensorFlow). Hence, the vast
majority of ML pipelines are optimized to run on commercial
clouds such as Amazon Web Services or Microsoft Azure.

ML pipelines include not only training and inference steps,
but they also require many complex data transformations, i.e.
pre-processing steps before the training starts. Most studies
do not take into account these extra steps when discussing the
performance of an ML application, but these steps matter in
terms of complexity and execution time, and will likely grow
in significance as ML models become more complex.

Many of the ML pipelines can be viewed as being composed
of three main steps: a data processing step, which prepares
the data for the second step, the actual training, and then the
final step, which traditionally is an evaluation step where the
model accuracy and other metrics are verified and potentially
visualized. Thus, ML pipelines can easily be expressed as
workflows managed by a WMS such as the system we leverage
in this paper, Pegasus [5]. In this work, we consider end-
to-end ML workflows, from data pre-processing to model
evaluation. The research questions at the core of this work
are twofold: (i) how SciML workflows differ from their
more-traditional counterparts? and (ii) how, and assuming that
SciML workflows are data-intensive, to which extent, data
management configurations at a workflow-level impact their
performance when running in a cloud environment?

We have chosen three representative ML workflows imple-
mented in Pegasus [5] that solve supervised learning tasks: a



Galaxy images classification workflow, a lung segmentation
workflow, and a multimodal (texts and images) social media
classification workflow. We have also selected one execution
platform, the NSF-funded cloud infrastructure Chameleon [8].
The Chameleon testbed gives us total control over the re-
sources allocated to a workflow and allows us to collect
fine-grain monitoring data (execution time, I/O performance,
CPU/GPU utilization) about the individual workflow tasks.
We use the collected data to characterize each workflow and
discuss how these SciML workflows differ from other scien-
tific workflows. To explore the impact of data management
solutions on workflow performance, we explore several data
management scenarios (e.g., network file systems, non-shared
file systems). This paper makes the following contributions:

• A general characterization study of ML workflows based
on statistics collected from the three realistic workflows
executed using Pegasus WMS;

• An experimental study demonstrating how data manage-
ment configurations affect ML workflow performance
when executing in cloud environments;

• A discussion of the challenges WMSs will be facing when
supporting ML workflows and how they could tackle
these research questions;

• Dissemination of the set of workflows used in this study
as open-source code available online to enable sharing
and reproducibility.

II. WORKFLOWS

In this section, we introduce each of the workflows and
discuss their general characteristics. The workflows feature
different scientific domains (astronomy, medicine, and crisis
computing) and different supervised learning approaches (im-
age classification, image segmentation, and natural language
processing). We decouple data pre-processing and training
tasks as data transformations for scientific experiments often
require specialized software. The pre-processing tasks in the
workflows exhibit data parallelism and can be executed si-
multaneously across available compute resources. The hyper-
parameters optimization (HPO) trials (where different values
of hyper-parameters are evaluated) could also be executed in
parallel, however, for this study, we use Bayesian optimization
and execute the trials sequentially. The inference is treated as
a separate task so that the job can be easily deployed when a
trained model is used for predictions. The presented workflows
are available online with detailed instructions; interested users
can replicate our findings.

A. Galaxy Classification Workflow

Context. Scientists use astronomical data from large-scale
surveys such as the Sloan Digital Sky Survey (SDSS) to,
among other tasks, map astronomical objects and study their
evolution. The galaxy morphology classification is a critical
step towards understanding how galaxies form and evolve. Due
to massive amounts of data currently available, researchers aim
to develop robust deep learning models to automatically clas-
sify images of the galaxies into 1 of 5 categories: completely

round-smooth, in-between smooth, cigar-shaped smooth, edge-
on, and spiral. The implementation of this workflow is based
on a publication [9] and is publicly available [10].

Worflow Job

Input Data

Inference and
Evaluation

Legend

Input Files
Output Files

Train VGG16 

processed
test imgs 

test
images Pre-process

Test Images

preprocessed train,
val imgs

augmented imgs

preprocessed train,
val and augmented

imgs
best hyper-
parameters

processed
train imgs 

train
images Pre-process

Train Images processed
val imgs 

val
images Pre-process

Val Images 

train, val, aug imgs,
best hyper-
parameters

best vgg16 models

 test imgs, best
vgg16 model

classification results,
performance stats

Galaxy Images

Augment
Images

Augment
ImagesAugment

Images

Dataset
Generation 

and Split

VGG16 HPO

Pre-workflow

Figure 1. Galaxy Classification Workflow [10].

Workflow Overview. The Galaxy Workflow (Figure 1) utilizes
the Galaxy Zoo 2 dataset that consists of 61,578 RGB images,
each of size 424x424x3 pixels (1.9 GB of compressed data).
The first stage of the workflow (Dataset Generation and
Split) filters out galaxies based on their feature scores. This
reduced dataset of 28,790 images is split into training, vali-
dation, and test sets. These datasets are passed to Pre-process
Images jobs where several data transformations (e.g., crop,
downscale, whitening) are applied. To address the problem of
class imbalance in the dataset Augment Images jobs generate
additional instances of underrepresented galaxy types. Next,
VGG16 HPO job utilizes the Optuna [11], an HPO framework,
to find a good set of hyperparameters (e.g., learning rate,
numbers of transferred layers). The chosen hyperparameters
and all the data are sent to the Train VGG16 job where
the model is trained with the chosen hyper-parameters. The
weights of the trained model are saved to a checkpoint file.
Finally, the Inference and Evaluation job runs predictions on
the test set, generates statistics and plots that provide insights
into the quality of the trained model.

B. Lung Segmentation Workflow

Context. Precise detection of the borders of organs and lesions
in medical images such as X-rays, CT, or MRI scans is
an essential step towards correct diagnosis and treatment
planning. We implement a workflow that employs supervised
learning techniques to locate lungs on X-ray images. The
implementation is publicly available [12].

Workflow Overview. The Lung Segmentation Workflow (Fig-
ure 2) uses a the Chest X-ray Masks and Labels dataset (800
high-resolution X-ray images and masks, 5.4 GB) available
on Kaggle. The dataset is split into training, validation, and
test sets before the workflow starts. Each set consists of
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Figure 2. Lung Segmentation Workflow [12].

original lung images (3000x2933 pixels each, 6.3 MB in
size) and their associated masks (same resolution, 30 KB
in size). The Pre-process and Augment Images job resizes
images (lungs and masks) to 256x256 pixels and normalizes
lung X-rays. Additionally, for each pair of lung image and
mask in the train dataset, two new pairs are generated through
image augmentation (e.g., rotations, flips). Next, the train
and validation data are passed to the UNet HPO job, where
Optuna [11] explores different learning rates. The Train UNet
job fine-tunes the UNet model with the recommended learning
rate on the concatenated train and validation set, and saves
the weights into a file. The Inference on Unet job uses the
trained model to generate masks for the test X-ray images.
The final step of the workflow, the Evaluation job generates a
PDF file with the scores for relevant performance metrics and
prints examples of lung segmentation images produced by the
model. As the inference and evaluation steps are implemented
as separated jobs, the Inference on Unet job can be deployed
independently for real-world predictions.

C. Crisis Computing Workflow

Context. In recent years, social media (SM) platforms like
Twitter and Instagram have proven to be valuable sources
of critical information during disaster events. The published
multi-modal content can provide timely and actionable infor-
mation to local officials. The growing field of crisis informatics
focuses on developing deep learning methods to automate
extraction of valuable posts from SM threads. Our implemen-
tation is inspired by [14] and available publicly [13].

Workflow Overview. The workflow consists of the two
pipelines that ingest, respectively, pictorial and textual parts
of SM posts. We use the CrisisMMD v2.0 [15] datasets
(18,082 images and 16,058 texts, about 2 GB of data) and its
accompanying data-split files. The textual part of the tweets is
passed to the Pre-process Tweet Text job, where stop words,
special symbols, and links are removed. Then, the train set
of clean tweets are embedded using GloVe [16] 200-d Twitter
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Figure 3. Crisis Computing Workflow [13].

pre-trained vectors (758 MB) and then used to find the best
hyper-parameters to train the BiLSTM architecture (BiLSTM
HPO job). Next, the model is re-trained on the concatenated
train and validation datasets, and its weights are saved and
passed to the Inference on BiLSTM job. Here, the model
predicts labels for the text tweets. A similar procedure is used
for the image pipeline where, instead of BiLSTM, a ResNet50
model is used. Then, results from both inference jobs are
used in the Late Fusion Classification and Evaluation job to
make final predictions where information is classified as either
informative or non-informative.

Table I presents an overview of models and selected ML
hyperparameters used for each of the workflows.

Table I
MACHINE LEARNING HYPERPARAMETERS

Model Size #Params #Trials #Epochs Batch Size

Galaxy Classification Workflow
VGG-16 528 MB 138M 2 5 32

Lung Segmentation Workflow
UNet 81.6 MB 24.4M 10 25 32

Crisis Computing Workflow
ResNet50 98 MB 25M 2 5 8
BiLSTM 9 MB 1M 2 10 128

III. EXPERIMENTAL SETUP

In this section, we introduce the Pegasus WMS, which we
use to execute all the workflows on our target execution plat-
form, Chameleon. We also describe different data management
scenarios that will be used to discover potential bottlenecks
that arise when running complex machine learning workflows
on a distributed infrastructure.

A. Pegasus Workflow Management System
Pegasus [5] is a popular workflow management system

that enables users to design workflows at a high-level of



abstraction. The workflow descriptions developed by the users
are independent of the resources available to execute the
workflow tasks and are also independent of the location of
data and executables. Pegasus relies on HTCondor [17], a
job management system particularly well suited for distributed
high throughout computing (HTC) environments, to run and
manage the generated workflows. Pegasus supports online
monitoring via its Panorama branch [18]. Panorama enables
end-to-end online workflow monitoring and provides execution
traces of the computational tasks (CPU and GPU), statistics
for individual transfers and infrastructure-related metrics.

B. Chameleon Cloud Platform

The NSF Chameleon Cloud [8] is a large-scale, deeply
programmable testbed designed for systems and networking
experiments. Chameleon leverages OpenStack to deploy iso-
lated instances of cloud resources for user experiments. It
provides large amounts of heterogeneous compute, storage,
and networking resources spread mainly across two sites:
University of Chicago (UC) and the Texas Advanced Com-
puting Center (TACC). Across these two sites Chameleon
offers over 15K cores and 5 PB storage and users have the
ability to provision bare metal compute nodes with custom
system configurations connected to user-controlled OpenFlow
switches operating at up to 100 Gbps.

We provision and configure selected Chameleon resources
to have two environments: (i) an environment without a shared
filesystem and (ii)) an environment with a shared filesystem.
The non-shared filesystem setup (see Figure 4) consists of one
node located in Texas Advanced Computing Center (TACC)
acting as a workflow submit node and HTTP server, and three
worker nodes located in University of Chicago (UChicago).
The submit node hosts the WMS, which coordinates and
launches workflow jobs on the worker nodes. All of the nodes
are bare metal nodes with 24 physical cores (hyperthreading
disabled), 192GB of RAM, 10Gbps network connection and
two of the worker nodes are equipped with one NVIDIA
RTX6000 (24GB memory) each. The shared filesystem setup
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Figure 4. Non-shared filesystem deployment on Chameleon.

(see Figure 5) is deployed entirely within Chameleon at
UChicago and uses the same amount of compute resources as
the non shared filesystem setup. This time, however, the submit
node is configured with a Network Filesystem (NFS) to enable
data access from the workers and also serve as the temporary

compute scratch location. Finally, both deployments use the
same operating system (Ubuntu 18.04) and software stack
(HTCondor v8.8.9 and Pegasus Panorama-branch v5.1.0 [18]).
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Figure 5. Shared filesystem deployment on Chameleon.

All experiments run the workflows using Pegasus [19]
and Singularity containers [20]. We collect statistics using
Pegasus’ Panorama online architecture [21], execute each
workflows 10 times per configuration, and present average and
standard deviation results over these 10 runs where applicable.
During all the workflow runs there were always enough
resources to handle all the jobs added to the queue.

C. Execution Scenarios

We design four experiments that exhibit different data
placement and file access strategies.

Baseline. This first scenario, which acts as a baseline scenario,
involves executing the workflows without any data placement
optimization. Input and intermediate data staging are trans-
ferred via http from the submit host, while output files are
sent back to submit host’s staging area via scp (see Figure 4).
To conduct the transfers we are using a maximum of 8 number
of threads (Table II) and we configure the preprocessing tasks
to be split in up to 6 jobs.

Container Installed. This second scenario is a variation of the
Baseline scenario optimized for container image placement.
Here, the Singularity container images are pre-loaded on the
worker nodes and the jobs are able to pick them up from
local disk whereas in the Baseline scenario container images
are sent over the network before each job.

Clustering. This third scenario attempts to minimize transfers
from and to the staging area and optimize data reuse among
tasks, while using the transfer mechanisms of the baseline
(see Figure 4). To achieve this, we leverage clustering tech-
niques offered by Pegasus and cluster together tasks that are
either using the same inputs or intermediate files. Specifically,
for the Lung Segmentation and Galaxy Classification work-
flows we cluster all tasks in a single job, however, for the
Crisis Computing workflow we create two clustered jobs, one
for the image pipeline and one for the text pipeline, and we
leave the late fusion as a single job. In the Clustering scenario
we assign an entire node to each cluster of tasks, and we used
a maximum of 24 threads to conduct transfers (Table II)



Network Filesystem (NFS). Finally, the fourth scenario uses
a shared filesystem among all the nodes, hosted on the submit
node ( Figure 5). Here, we use a shared file system to host all
the input, intermediate and output data, but we also use it as the
scratch location during execution. No clustering is employed
and the input files are symlinked to the scratch location of the
jobs. With this scenario, we attempt to highlight the penalties
ML pipelines face when using a shared file system.

Table II
EXECUTABLE WORKFLOW SCENARIOS AND TRANSFERS SETTINGS

Aux. Transfer Files
Workflow Scenario Jobs Jobs1 Threads2 Staged In

Galaxy Baseline 11 12 8 111950
Classification Container Inst. 11 12 8 111950

NFS 11 12 8 111938
Clustering 1 4 24 28803

Lung Baseline 7 12 8 9446
Segmentation Container Inst. 7 12 8 9446

NFS 7 12 8 9438
Clustering 1 4 24 1417

Crisis Baseline 16 12 8 51006
Computing Container Inst. 16 12 8 51006

NFS 16 12 8 50987
Clustering 3 6 24 12758

1 The number of auxiliary jobs generated by Pegasus during planning.
2 Number of threads used by Pegasus to transfer (stage in/out) job input files.

IV. GENERAL CHARACTERIZATION

We first aim to characterize each workflow at a global level.
To that end, each workflow is executed only with Baseline
settings. The characterization data is collected at job- and
workflow-level. We use Panorama to capture workflow’s I/O
behavior, CPU utilization and GPU utilization traces. The
values presented in Tables III and IV are averaged over 10
runs and I/O data collected.

A. Job-level Characterization

First, we examine the Pre-processing job. The data transfor-
mations performed during pre-processing are commonly exe-
cuted on the CPU. This step is easily parallelizable, and data
(stored in files) are read into the memory in batches resulting in
low values of peak memory. The Lung Segmentation Workflow
has the highest peak memory and average execution time as
medical images segmentation requires high-resolution images.
The pre-processing job in the Crisis Computing Workflow
has the highest average CPU utilization due to use of a
computationally expensive interpolation algorithm.

The peak GPU memory remains constant for each workflow
across the HPO, Training and Inference jobs. That value is
bound by the number of the parameters in the model, batch
size (see Table I), and size of a data instance. It differs for
the Inference job on ResNet50 as predictions were calculated
on the CPU. The HPO and Training jobs are the most
computationally expensive. The tasks require forward pass of
the data and weights update through backward propagation
(both consists of many tensor operations). The Inference jobs
are characterized by lower average GPU utilization as only
the forward pass of the data is needed to make predictions.

The HPO and Training jobs for the BiLSTM model expect
a large file with the pre-trained sentence-level embeddings as
input (a common practice for NLP tasks). Once the model is
trained, the required fine-tuned embeddings are stored within
the model’s weights resulting in a low I/O read value for the
BiLSTM Inference task.

The Evaluation jobs generate performance metrics and plots
that help assess the quality and robustness of the trained mod-
els. Inference and evaluation steps are sometimes performed
in the same script during model development.However, these
tasks are often separated when a model is deployed in produc-
tion. The Evaluation jobs are not computationally expensive
but with the growing stress on trust and explainability in AI,
we expect the complexity of the evaluation to increase in the
future and as a result, the cost will grow as well.

B. Workflow-level Characterization

The Crisis Computing Workflow is characterized by the
largest amount of both the CPU and GPU hours. This can be
attributed to the structure of the workflow that consists of two
training pipelines. Moreover, in the image pipeline, we employ
"on the fly" image augmentation (i.e., new versions of images
are generated on CPU during training and are transferred to
GPU), which further increases the number of CPU hours.

The images used in the Galaxy Classification workflow have
a low resolution resulting in the small size of the workflow’s
input. The galaxies are classified based on their shape as
presented in the image, and this tasks is not as intricate as
deciding whether an image is informative. It also does not
require high quality images for complex feature extraction.

As seen in Table IV, the workflows are using many input
files, ranging from a couple thousand (Lung Segmentation) to
over 28,000 (Galaxy Classification), that are sometimes small
in size. Thus, different data management strategies with a
workflow, when data moves between tasks, might affect the
overall workflow execution. In the next section, we explore 4
different scenarios that are supported by Pegasus WMS and
optimize for data access and data placement.

V. EXPERIMENTS

Now that we have defined and characterized our different
workflows using a basic configuration, we study the impact of
data management on end-to-end workflow performance using
different scenarios defined in Section III-C.

Results. For each workflow and each execution scenario, we
analyze the total time the workflows took to complete, the
cumulative compute time spent on the jobs and the cumulative
time spent in staging in/out data for the computations.

In Figure 6, the cumulative compute time remains fairly
similar across all workflows for all scenarios, except NFS. In
the NFS configuration apart from input data being picked up
from the shared location, the NFS was used as the execution’s
scratch location and all outputs were produced directly to the
shared filesystem. This slowed down the compute time, since
some of the jobs (e.g, HPO, Train) were I/O heavy (Table III).



Table III
JOB-LEVEL CHARACTERIZATION WHEN RUNNING WITH NON SHARED FILESYSTEM (BASELINE SCENARIO)

I/O I/O Avg. Peak Avg. Peak Avg.
Job Read (MB) Write (MB) CPU (%)1 Memory (GB) GPU (%) GPU Memory (GB)2 Exec. Time (Sec)3

Galaxy Classification Workflow
Preprocessing 435.47 260.71 99.85 0.08 - - 135.21

HPO 2900.37 3404.28 1426.22 41.19 53.22 4.13 3421.48
Training 1754.6 2091.05 789.51 18.8 68.92 4.13 1453.53

Inference & Evaluation 1440.85 527.82 404.01 3.78 26.76 4.42 51.84
Lung Segmentation Workflow

Preprocessing 8107.44 143.99 120 0.37 - - 337.85
HPO 3816.46 84.8 100.75 5.96 68.19 22.99 4947.24

Training 540.71 8010.01 104.83 5.12 62.48 22.99 557.4
Inference 396.57 0.86 106.89 3.1 10.39 22.99 22.51

Evaluation 0.39 0.37 129.44 0.43 - - 6.13
Crisis Computing Workflow

Preprocessing (image) 1185.06 1457.79 660.74 0.07 - - 212.48
Preprocessing (text) 11.84 1.12 121.99 0.133 - - 8.8

HPO (ResNet50) 28321.72 786.75 186.22 6.44 68.73 1.67 1424.91
HPO (BiLSTM) 4464.78 0.95 269.51 4.13 20.92 22.64 1031.6

Training (ResNet50) 17702.71 728.70 179.75 5.94 63.73 1.76 871.99
Training (BiLSTM) 2032.84 5.84 272.56 4.03 20.9 22.64 625.09

Inference (ResNet50) 2734.55 231.07 2386.63 16.64 - - 3003.4
Inference (BiLSTM) 400.48 0.58 111.57 4.13 42.41 22.64 65.95

Evaluation 384.47 58.59 161.01 11.18 3.72 0.83 211.76
1 Average CPU utilization of a job type (e.g. HPO, Training), calculated as 100 × (avg.stime + avg.utime)/(avg.execution_time). If

multiple jobs are under the same type, we average their respective CPU utilization.
2 Maximum video memory used by this type of job across all the workflow runs (here 10).
3 Average execution time of a job type, it considers only time spent on compute. If multiple jobs fall under this job type we calculate this value

as the total sum of the jobs average execution time, as if they were executed sequentially.

Table IV
WORKFLOW EXECUTION PROFILES. (BASELINE SCENARIO)

Aux. Input Input Container I/O I/O Peak Peak GPU CPU GPU
Workflow Jobs Jobs Files Size (GB) Size (GB) Read (GB) Write (GB) Memory (GB)1 Memory (GB) Hours2 Hours

Galaxy Classification 11 12 28793 0.374 2.4 6.29 6.14 41.19 4.42 33.23 1.93
Lung Segmentation 7 12 1408 3.6 4.1 12.56 8.05 5.96 22.99 37.63 1.64
Crisis Computing 16 12 12747 3.2 4.6 55.89 3.2 16.74 22.64 48.76 2.45
1 Maximum resident size memory used by any job of the workflow.
2 Total time a single CPU core was assigned to the workflow (for both compute and auxiliary tasks). Same for GPU hours with a single GPU.
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The results in Figure 7 were anticipated, since each scenario
was designed to further optimize time spent on staging in
and out data. For all the workflows a reduction in staging
time is observed moving from the Baseline towards the
Clustering scenario, with these two having the slowest and
the fastest times. Even though all of the workflows show
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Figure 7. Cumulative stage-in and stage-out time for each workflow when
running on Chameleon Cloud.

an overall improvement across the scenarios, it is not in
the same proportion. For the Crisis Computing workflow the
Baseline was improved by 700 seconds when we moved to
the Container Installed scenario and a further 800 seconds
when we moved to the NFS scenario. On the other hand,
the Galaxy Classification workflow was improved by only
a few hundred seconds. This result can be attributed to the
difference in container size used for each of the workflows
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Figure 8. Workflows end-to-end execution time for each scenario when
running on Chameleon Cloud.

(4.6 GB vs 2.4 GB), as well as the difference in number of
input files (12,747 vs 28,793) and total input size (3.2 GB
vs 0.374 GB) - the Galaxy Classification workflow has many
small files. Additionally the NFS case is not the fastest of
them all, since Pegasus had to transfer files for every compute
job, while for the Clustering case Pegasus had to transfer
files only for each cluster (Table II). Finally, in Figure 8 the
data placement and stage in/out optimizations affect all the
workflows and a reduction in end-to-end execution time is
observed from Baseline to Container to Clustering. Although,
the NFS case had faster stage in/out times than the Baseline
and Container Installed scenarios, the overhead in compute
time overshadows the staging gains and results in the slowest
end-to-end execution time.

Summary. Based on the results, we conclude that clustering
together tasks that use the same files should be a first class
feature of WMSs that aim to support large, scientific ML
workflows. The ease of use and convenience of shared NFS
filesystem can be out-weighted by accessing files over the
network and sharing the I/O bandwidth among concurrent jobs.

ML workflows rely on multiple library dependencies, and
thus support for containers is very important in order to obtain
a common execution environment across execution sites and
workers. However, the size of these containers can be signifi-
cant to the size of input and they should not be overlooked. In
our experiments preloading the containers didn’t improve the
end-to-end execution time by a considerable margin, but for
workflows like the Galaxy Computing it can make a difference
on the network utilization. Finally, many traditional WMS
(including Pegasus) anticipate that all the input and output
files for each job are known before the workflow execution
starts. However, because ML methods often rely on thousands
of data files accumulated from different sources the quality of
each data file cannot be guaranteed or checked beforehand. To
support ML workflows, scientific WMS will have to embrace
dynamic changes on the number of input and output files.

VI. RELATED WORK

Scientific workflows and workflow management systems
have been two extremely fertile research domains in the

last decades and resulted in many contributions (a relevant
survey [22]). However, recently, several workflow manage-
ment systems have emerged to accommodate the life-cycle
of ML pipelines on high-performance computing environ-
ments and commercial clouds. Wozniak et al. [2] designed
a workflow framework for cancer research optimized for HPC
resources. Many cloud-native WMS have also been introduced.
MLFlow [23] and Pachyderm [24] are few examples of
cloud-native Kubernetes [25]-based solutions tailored for ML
workflows. Despite this, major companies are also rolling
out there own cloud native WMS in support of ML, with
some examples being Uber (Michelangelo) [26] and Facebook
(FBLearner) [27]. These solutions target pure ML pipelines,
where all the pre-processing is done on-the-fly, traditionally in
Python, and not scientific ML workflows which may contain
additional processing steps relying on specialized software.

Apart from WMS, general purpose distributed computing
frameworks such as Spark [28] and Hadoop [29] have also
been thoroughly investigated for ML workloads [30]. More
recently research focus has been shifted towards specialized
ML frameworks built on top of serverless computing [31],
[32]. Carreira et al. [31] have proposed Cirrus, a framework
that facilitates the execution of ML workflows on the cloud
using a serverless approach.

Monitoring and profiling of ML pipelines have also been
topics with a lot of activity. Zhou et al [33] proposed an
extension of HPCToolkit to enable fine-grained performance
analysis on GPUs by collecting program counter samples on
both CPU and GPU. Profiling and visualization tools have
also been introduced by hardware vendors (e.g., NVIDIA with
Nsight [34] its in-house profiling tool for GPU application) and
ML frameworks such as PyTorch [35] which, when coupled
to TensorBoard [36], can help scientists analyze and under-
stand ML algorithm behaviors and performance. However,
these tools are focusing on in-depth performance analysis and
debugging, in this paper, we used a more practical resource
monitoring approach during the ML workflow executions and
did not delve into fine-grained analysis of function calls.

A vast majority of existing characterization and performance
studies focus exclusively on the model training or inference
tasks, and use reference implementations of popular deep
learning models that fail to mimic the complexity of workloads
used in scientific experiments [37], [38], [39]. To the best of
our knowledge, very few solutions have been developed with
an academic mindset. This work is one of the first to explore
the feasibility of managing scientific ML workflows using
WMS primarily designed to support scientific workflows.

VII. CONCLUSION

We have characterized three representative scientific ma-
chine learning workflows from different scientific domains.
We used the experimental cloud testbed Chameleon to explore
the impact of several data management configurations on the
workflows performance. We discussed these results in terms of
workflow characterization and in terms of broader implications



on workflow management systems targeting the support of
scientific machine learning workflow.

As expected, regardless of their relative small input size,
scientific ML workflows can be quite data intensive. The
Galaxy workflow, for example, reads and writes more than
13 times it’s input size. On the other hand, even though they
get a great speed up from GPUs they do not utilize them to
their maximum capacity. Furthermore, GPU utilization greatly
varies from one ML workflow to another (from 21% to 68%).
We have demonstrated that data placement, especially having
data collocated (achieved with job clustering), can lead to
better execution time, up to 16% compared to the baseline
for the Crisis Computing workflow. Finally, we have showed
that the convenience of a network shared filesystem incurs a
significant performance penalty (up to 13% compared to the
baseline for the Galaxy workflow). Although the workflows
are represented in Pegasus, the results are not specific to it.

A short-term direction is to investigate more data manage-
ment configurations with Pegasus (e.g, object-storage) utilizing
machines with different I/O systems to assess the confirm our
findings that task co-location achieved with Pegasus clustering
can significantly improve workflows execution time compared
to naive deployments. A longer-term future work direction
is to integrate our findings into Pegasus WMS to enhance
its support of scientific ML workflows, for example, by
providing automatic clustering capabilities that will maximize
data locality. The presented workflows are available online
with detailed instructions; interested users can replicate our
findings.
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