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ABSTRACT
Many Internet of Things (IoT) applications require compute re-

sources that cannot be provided by the devices themselves. At the

same time, processing of the data generated by IoT devices often has

to beperformed in real- or near real-time. Examples of such scenarios

areautonomousvehicles in the formofcarsanddroneswhere thepro-

cessingof observational data (e.g., video feeds) needs tobeperformed

expeditiously to allow for safe operation. To support the computa-

tional needs and timeliness requirements of such applications it is

essential to include suitable edge resources to execute these applica-

tions. In this paper, we present our FlyNet architecturewhich has the

goal to provide a new platform to support workflows that include ap-

plications executing at the network edge, at the computing core, and

leverage deeply programmable networks. We discuss the challenges

associated with provisioning such networking and compute infras-

tructure on demand, tailored to IoT application workflows.We de-

scribe a strategy to leverage the end-to-end integrated infrastructure

that covers all points in the spectrum of response latency for appli-

cation processing. We present our prototype implementation of the

architecture and evaluate its performance for the case of drone video

analytics workflows with varying computational requirements.

CCS CONCEPTS
•Computer systems organization→ Sensor networks;Cloud
computing.
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1 INTRODUCTION
In the past decade, we have seen an unprecedented increase in data

driven research leading to data-intensive applications,which are one

of the pillars of computational science. This increase in data driven

research is caused by a series of factors. First, through advances in

sensor technology, instrumentation, and the proliferation of sensor-

rich devices, a vast variety of data sets have been generated, with a

significant portion of thembeing publicly available. Second, national

and international research facilities like the Large Hadron Collider

(LHC) [34], the Laser Interferometer Gravitational-Wave Observa-

tory (LIGO) [18], and networks of telescopes like the Event Horizon

Telescope (EHT) [5], continue to drive fundamental research.

One class of data-intensive applications, which has recently re-

ceived significant attention are applications that rely on autonomous

(e.g. self-driving cars) and semi-autonomous systems (e.g. drones)

that are dynamic, data-driven and data-intensive — the so called

Dynamic Data Driven Application Systems (DDDAS) [8]. In this

paper, we focus on supporting applications that provide safe and

efficient use of Unpiloted Aerial Vehicles (UAV), e.g. drones for in-

formation or payload delivery. We have selected these applications

since UAVs have become both the subject of research and are also

used by researchers to provide scientific observations and deliver

time-critical payloads.

UAV applications pose several challenges. They often have di-

verse and dynamic requirements for network and compute resources.

Many UAV applications, e.g. the application described in Section 2,

require optimized and adaptive data movement from data reposi-

tories and instruments to an end-to-end edge-to-core computing

infrastructure that allows for the processing of the data at the edge

and on core computing resources (whichmay also host key data sets).

Some UAV applications demand a range of processing capabilities

with stringent latency requirements under several constraints (e.g.

energy, etc.). In this case, the required processing could be “spread

out" over a spectrum of available resources, from the edge (light-

weight and immediate analysis) to the core (heavyweight analysis

that takes significant time). Additionally, the applications are sensi-

tive to network latency for data movement and for sending control

information to the edge devices. These applications also require com-

plex workflows to collect, process, analyze, and store the generated

data. Such workflows utilize an arbitrary set of networking, com-

pute, and storage resources and can performdynamic computational

offloading in the edge-to-core continuum of resources. Provisioning
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resources for these workflows and planning and executing them is a

complex task in itself, which requires the orchestration of resources

in a timely, robust, and efficient manner.

In this paper, we present a new platform, FlyNet, that has the

goal to support data-driven scientific research and addresses some of

the above challenges. FlyNet supports UAV applications from the

network edge to the compute corewith programmable networks. It pro-
vides researchers with unprecedented flexibility for tailoring work-

flows to the resource requirements of their DDDAS IoT applications.

FlyNet builds on our previous work [20] that demonstrated how a

workflowmanagement system and a dynamic resource provisioning

entity canwork together to support data-driven science applications.

In particular, we have shown howwe can dynamically provision net-

work links to deliver weather radar data to dynamically provisioned

computational resources. This system [20, 21] was put in place to

support the CASA [25] severe weather forecast and warning system

in the Dallas Fort Worth area.

The work presented makes the following contributions:

• Anoverarchingarchitecture for supportingUAVappli-
cations. FlyNet’s design supports data-driven applications
that require features like (ultra) low latency and in-network

processingby enabling theprovisioningof compute resources

at the edge, within the network (in-network), and core com-

puting resources. This enables a new generation of science

applications through end-to-end resource integration.

• Provisioning andDeployment Services.We implement a

set of services that instantiate that architecture by providing

mechanisms for automated resource provisioning and service

deployment.

• Novel Application.We present the design and implementa-

tionof anovel droneapplication thatperformsvideoanalytics,

offloading the analytics to the nearest edge server in-flight

and leverages the FlyNet architecture.

• Proof-of-conceptdeployment.Wepresentaproof-of-concept

deployment of the FlyNet architecture for the drone video

analytics application in actual testbeds.

• Evaluation.We present results from a functional evaluation

of the drone video analytics application running on FlyNet.

There are a number of novel aspects of Flynet. Unlike exist-

ing, proprietary, industry edge-to-cloud architectures like Intel’s

FlexRAN [1], which provides software support for applications to

simplify the use of the radio access and edge resources, FlyNet pro-

vides an open approach, which is agnostic of the target hardware

architecture and is compatible with existing research testbeds. Ad-

ditionally, FlyNet, as demonstrated through our target application,

enables a dynamic, measurement-based resource selection approach

with the goal to guarantee certain metrics (e.g., latency, throughput)

to the application. Unlike existing approaches for computational

offloading [43], which mainly focus on the usage of drones as edge

compute resources for IoT devices, Flynet addresses applications

where drones themselves are data producers (IoT devices) that can

benefit from edge computing resources.

The paper is organized as follows. Section 2 presents the unique

challenges for UAV applications and Section 3 discusses the architec-

tural design for FlyNet, which addresses these challenges. Section 4

presents the individual componentsof theFlyNetarchitecture,which

we designed, implemented and used for the evaluation. Section 5

presents a multi-faceted evaluation of our systemwith an exemplar

UAV video analytics application employing different architectural

choices andnetworkconditions.Wepresent relatedwork inSection6

and conclude the paper in Section 7.

2 MOTIVATING
APPLICATION: DRONEVIDEOANALYTICS

Before we describe the overall FlyNet system, we present our target

UAVscience application to illustrate the challenges such applications

pose to the available network and compute infrastructure.

We consider a UAV video analytics application, where a drone

is flying at low altitude over a city simultaneously recording video

footage of the area. The video footage can be used for a variety of

applications like traffic jam detection, recognition of humans, or the

identification of storm damage. Real-time video analytics can assist

in suchscenarios, helpingguide thedroneorhelpingusers (e.g., emer-

gency responders) react quickly to events (since automated detec-

tions can bemuch faster than human analysis). Figure 1 shows a com-

puter vision application that provides situational awareness in real-

time (e.g., recognizing and counting humans/vehicles) in order to

support disaster response or smart city trafficmanagement. In partic-

ular,we focusondrones equippedwithhigh-resolution cameras, that

are needed for operations such as disaster management, traffic man-

agement, remote sensing, border surveillance, and smart farming.

Figure 1: Computer vision application for analysis and classifica-
tion ofmoving objects (e.g., cars, trucks, etc.) observed by a drone.

Our target drone video analytics scenario is shown in Figure 2,

where a drone communicates via Wi-Fi, 4G/LTE or 5G networks

(indicated by circles) with candidate edge processing nodes (green

and yellow boxes) that are distributed across the region. The diag-

onal green line indicates the path of the drone and the black arrow

indicates its current position. During such a flight a drone will be

entering and leaving the coverage area of cell towers and, in some

cases,might be able to communicatewithmore than one. In addition,

several candidate edge nodes might be available for the execution

of the video analytics application.

To use such drones effectively, several challenges need to be

addressed in terms of provisioning available edge/cloud compu-

tation resources to satisfy the needs of drone video analytics appli-

cations [32, 42]. First of all, limited compute and power resources on

board a drone require that processing be offloaded to more powerful

compute resources like edge or core cloud resources. Second, to keep



Figure 2: FlyNet scenario for drone video analytics. The cir-
cles in this image show the coverage area of cell towers and
the boxes show base stations (edge nodes). The green lines
indicate flight paths for drones.

latency at a minimum, the edge compute resources should be close

to the physical location of the drone. Since a drone can change its

location significantly over the lifetime of an application the compu-

tation offloaded to the edgemight have to bemigrated between edge

serves in order to keep the latency as low a possible.

To meet these exemplar challenges, we designed FlyNet as an

Mobile Edge Cloud (MEC)-based system [36] that provides: (i) dy-

namic edge/cloud computation offloading, and (ii) mobility manage-

ment [14] across the edge-to-core latency spectrum.

3 FLYNET SYSTEMARCHITECTURE
In this section, we present the FlyNet architecture, as shown in Fig-

ure 3, which is needed to compose an end-to-end (edge-to-core)

infrastructure capable of supporting UAV applications.

3.1 Edge-to-Core Infrastructure
The edge-to-core infrastructure depicted at the bottom of Figure 3

covers all points in the spectrum of response latency for application

processing - the latency spectrum.While someprocessing needs to be

performed on the devices and the network edge, some computations

need to be performed in-network and some can be offloaded to core

computing resources “far" from the edge devices.

There are several categories in this latency spectrum - edge de-
vices, edge servers, in-network,and core computing.Whileedgedevices

provideminimum latency for response times, they have limited com-

putational capabilities and/or power constraints. Thus, on-board

resources are often not sufficient to support the UAV application

processing needs. Edge servers or nodes that comprise an edge com-

puting infrastructure have more computational power and fast turn-

around time, but support only limited scales of computation (e.g.

they might be able to run very lightweight algorithms, but not data

and compute intensive codes like deep learning models).

As the latency on the spectrum increases, one can envision pro-

cessing packets and turning them around using in-network com-

puting capabilities (either compute resources or specialized pro-

grammable hardware deployed in the network core). This will re-

duce latency compared to cases where data has to be transmitted all

the way to the computing core. For UAV data processing that needs

substantially more computational resources (e.g. GPUs for training

machine learning models for object detection), data needs to travel

all theway to core cloud resources. This incurs themaximum latency

with the benefit that high processing power can be utilized.

The current FlyNet edge-to-core infrastructure consists of edge

devices (i.e., drones capable of obtaining high-resolution video data),

edge servers - small and large - capable of edge processing and

hosting data sets, edge servers connected to cloud platforms (e.g.

Chameleon [17]), high-performance traditional Layer2 networks,

and core cloud resources (ExoGENI [6] and Chameleon) with sub-

stantial computational power.

3.2 FlyNet Services: Resource Provisioning
To realize the overall FlyNet architecture, we use a network-centric

platform called Mobius [20, 23, 24, 26] with support for provision-

ing programmable cyberinfrastructure comprised of ExoGENI [6]

and Chameleon [10, 17] cloud testbeds. Mobius makes it easier for

applications to provision andmanage the appropriate infrastructure

resources for their execution. In addition, external data repositories

can be stitched into workflows by using Layer2 circuits (Internet2,

ESnet) and SDN overlay networks [29].

Mobius supports multi-clouds and automated network provi-

sioning to connect the clouds. It leverages the Ahab API [24] to

provision VMs on ExoGENI and the jclouds API, which supports

OpenStack based clouds, to provision Bare Metal (BM) nodes and

VMs from Chameleon. Mobius leverages the ExoGENI Layer2 net-

work provisioning API to stitch provisioned resources (potentially

across clouds), and to connect external edge resources to stitch-

ports [20], which essentially are named attachment points enabling

direct Layer2 connections to resources outside the ExoGENI fed-

eration. Users, applications, and workflow management systems

interact with Mobius using a REST API for provisioning resources

and deploying services (Section 3.3).

Future provisioning support will include integrating in-network

computing resources (e.g. with P4 [9]), as they become available

on the FABRIC [7] network infrastructure. Mobius also supports

provisioning resources from public clouds like Amazon AWS, and

connecting them to the rest of the provisioned infrastructure with

Cloud Connect [2, 3]. We have not leveraged this feature for the

work in this paper.

3.3 FlyNet Services: Service Deployment
Container setup and orchestration. Since we envision that edge
servers will be shared bymore than one application the FlyNet archi-

tecture supports a container-basedapplicationdeploymentapproach

by using KubeEdge [40], which provides container orchestration at
the edge. This containerized approach provides FlyNet with the

required flexibility for workflows that support drone-based applica-

tions. The use of containers adds the additional benefit of simplified

deploymentsofapplicationsonedgenodesandsupportsmigrationof

applications between edge nodes. The latter is an important require-

ment of drone-based applications, where the distance and thus the
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Figure 3: FlyNet System architecture showing how applications can leverage edge to core infrastructure via FlyNet services.
resulting latency between a drone and an edge node might become

too large for effective and safe operations. In this case, migrating

the application to a different edge node that is closer to the drone

is critical. To support FlyNet, we extended Mobius to automatically

deploy a container orchestration service using KubeEdge, which au-

tomatically instantiates KubeEdge clusters on the provisioned nodes.

In order to support bare metal container orchestration on the edge

resources, as on theChameleon edge resources -CHI@Edge [11],Mo-

bius takes advantageof theRESTAPI [27] toprovision the containers.

Computation and datamanagement services.Mobius services

also allow applications and workflow systems to deploy HTCon-

dor [37] clusters - HTCondor Master/scheduler and HTCondor

workers - on the provisioned resources selected from (potentially)

multiple cloud platforms (ExoGENI and Chameleon), so that work-

flow/application taskscanbereadily scheduledandexecuted.Mobius

automates configurations for the networks, IP addresses, setup of

the daemons and makes it easier for scientists and applications to

use the provisioned infrastructure.

Monitoring setup and data collection - Prometheus. Mobius

also automatically deploys Prometheus [4]monitoring agents on the

provisioned resources - containers/VMs/BM. These agents monitor

different resource metrics, e.g. CPU loads, continuously and stream

the measurements to a central Prometheus server. The Prometheus

server aggregates all themonitoring time series data from the agents

and exposes an API for applications. The applications can query on

the observed performance attributes of the resources and make key

decisions for resource management. Such monitoring data is critical

for edge resource selection (described in Section 5.3).

4 EVALUATION SETUP
4.1 Scenario
To facilitate a multifaced evaluation of the FlyNet platform, which

is difficult with real drones, we have simulated drone flights that
replay formerly recorded in-flight video. During the flight, the drone

controller has to decide which cell towers the drone should commu-

nicate with. Additionally the controller needs to decide on which

edge node(s) the video analytics algorithm should be executed. We

use network emulation software on the simulated drone to test our

video analytics application with throughput and latency settings

representative of current (4G) and future (5G) cellular networks [41].

The video feed from the drone can also be forwarded from the edge

to the core cloud. There, the data is stored longer-term with the

goal to integrate it with the larger data set that is then used to train

the machine learning-based video analytics algorithms. This part

of the application is performed in the core cloud since latency is not

a critical factor and more powerful compute resources can and need

to be used. The infrastructure and software components required

to execute the scenario are shown in Fig. 4 and Fig. 5 and explained

in detail in the following sections.

Drone. In our scenario, we envision relatively small drones that are

equippedwith a video camera and some veryminimal compute capa-

bility. Drones communicate with cell towers to transmit their video
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footage to either edge compute or core cloud compute resources.

Their operations are limited by the power capacity that is provided

by their batteries.

Cell Tower.A cell tower’s only functionality in this scenario is to

serve as the interface between the wireless network (for communi-

cationwith drones) and thewired network (for communicationwith

edge and cloud compute resources).

Base Station. The base station provides mobility management ser-

vices for the drones. It collects information about a drone’s location,

current network conditions, and the current load of edge servers.

Based on this information it can determine on what edge server the

video analytics (e.g. object detection) should be performed and on

which path the data from the drone should be transmitted to the

edge computing node. The base station has to constantly monitor

the drone’s position and the network and edge computing load to

change the location where computation is performed and/or the

path between drone and edge. While the base station service can

be located anywhere in the network, it is beneficial to place it on a

device that is in the same region as the drone and the edge servers to

avoid any additional latency. In this paper, we place the base station

service on the same edge node as the video analytics process.

Edge Server(s). This is either a single compute node or a small clus-

ter of compute nodeswith high-bandwidth connectivity and gridded

power. It provides compute capacity that is significantly higher than

what is available on the drone but also significantly lower than the

resources offered in the core cloud.

Core Cloud. This component represents a compute cloud that con-

sists of one or more data centers. The core cloud offers substantial

compute capabilities including specialized processing entities like

GPGPUs and FPGAs. In our scenario, we make use of resources

offered by the Chameleon testbed [17] as our core cloud platform.

4.2 Drone Flight Simulation andVideoPlayback
This initial evaluation of our approach does not include the deploy-

ment of actual drones and is based on flight simulation and the

emulation of varying network conditions and video playback from

the drone to the edge.

Drone Flight Simulation. To determine the simulated flight path

of a drone, we define a start and end point. Based on that information

our system currently determines a direct, straight-line path between

source anddestination.Cell towers are randomlyplaced in the region

where the flight takes place and during a flight a drone detects the

ones it can use for communications.

VideoPlayback. For video playback, a previously recorded video is
stored at the node that simulates the drone. On that node, the ffmpeg
tool is used to stream the video in real time to the edge node. To

simulate the real-time streaming of the video frames they are sent

according to the time stamps that were added to the frames when

they were originally generated.

Application Containers. To support the scenario, we create two
docker containers at the edge. One container runs the receiving end

of ffmpeg and stores the received frames in a shared file system. The

second container runs the video analytics application [30]. Video

data for this application is streamed from the (simulated) drone to the

first container. The decision to run the receiver of the video stream

and the video analytics application in two separate containers allows

for more flexibility with respect to resource allocation. For example,

several containers executing the video analytics application can be

initiated to parallelize this process, if and when required.

Resource Provisioning. To support the scenario, FlyNet provi-

sions nodes from Chameleon and ExoGENI that emulate edge nodes

(Figure 4). It performs automated provisioning of the edge comput-

ing nodes and the node(s) simulating drones and implementing base

station capabilities on Chameleon and ExoGENI clouds, respectively.

Furthermore, FlyNet orchestrates the entire setup including the

provisioning of compute resources from ExoGENI and Chameleon,

stitching the Layer2 networks between the cloud testbeds, and con-

necting them into the stitchport for the edge nodes.

4.3 Network Emulation
During the simulateddroneflight,wegenerate a randomizedmeshof

cell towers such that at any given time the drone has five towers that

it can communicate with. For the experiment we have used a 10km

radius for 4G LTE networks. Each simulated tower remains static

until the drone exits its 10km radius, at which point it is replaced

with a new tower.

We use drone height and distance from the cell tower as rough

proxy for reference signal receive power (RSRP), as the two are

shown to be somewhat correlated [35]. We generate a signal param-

eter similar to cell phone ‘bars’, equating to representative RSRP

values between -110 and -50dbm. We refer to estimates in the lit-

erature to vary network latency round trip times between 60 and

90ms [38] and uplink rates between 1 and 10Mbps based on the re-

alistic RSRP [41]. In practice median upload rates may tend to fall

on the lower edge of this range.

4.4 Resource Selection
The simulated drone sends cell tower information to the base station.

The base station is aware of available edge resources and generates



a weighted network graph with nodes for the drone, the cell towers,

and the edge resources. The weights on the graph include round

trip time, bandwidth to the cell tower, and load on the edge resource.

Using Dijkstra’s algorithm, the base station determines the most

optimal network path and appropriate edge node for the drone to

use. By generalizing all network elements of the system into a graph,

the network can be scaled upwithmore layers, nodes, and/orweight

parameters, and continue to use the same framework.

Upon completion of the decision process the base station first

selects the intended edge resource it will send data to, such that

the server side of ffmpeg can be instantiated on that resource with
KubeEdge. After receiving confirmation it indicates to the drone

which path andwhich edge resource to use alongwith the estimated

latencies and uplink rates. The tc utility is used to emulate the 4G

wireles network characteristics on the link between drone and edge

in advance of the initiation of the video streaming process.

5 EVALUATION
We present a two part evaluation: 1) a functional evaluation of the

FlyNet-deployed system showing the types of monitoring infor-

mation we can collect and how this information is used to derive

application-relevant metrics, and 2) the application’s use of the met-

rics for making decisions about computation offloading.

5.1 Monitoring Information
Underpinning our scenario is the notion of multiple edge devices

serving as candidate locations for which to offload a batch of compu-

tation at a given time.Given that these devicesmaybeheterogeneous

in nature, possibly shared between users, and residing on different

networks at different physical locations, we collect live state infor-

mation from each device to inform our edge node selection process.

There is an assumption that the monitoring data is reasonably con-

tinuous in time, such that metrics obtained a short time beforehand

are representative at execution. For our video analytics application,

we collect the following information about the processing resources:

• Network bandwidth: A key consideration for streaming high

resolution video data is the network bandwidth. An airborne

drone at any given time may be within range of multiple cell

towers that could provide communications. As described in

Sect. 4.3,we simulate a cell networkmesh andassign represen-

tative bandwidths to each such path option. This represents

the first hop from the drone. Given that we are using real pro-

cessingsystemsforourevaluation,wedeploy iperf3 serverson
each candidate node. Every iteration of the drone flight sends

a one second bandwidth test from the base station to each

device to serve as a proxy for the available bandwidth more

generally associated with the device, excluding the drone

connectivity which will often be the bottleneck.

• Average Compute Load: CPU load estimates may take on

considerable importance when using a shared device, and/or

for compute heavy jobs such as video analytics with neural

networks. To measure such we use Prometheus (Section 3.3),

which provides a REST interface allowing the system to re-

quest information for average CPU utilization of the edge

node in the last one minute.

• AdditionalQueries:Wecollect state informationfromPrometheus

to ensure that the node is online and active. Prometheus can

also monitor disk utilization, memory usage, and with a plu-

gin, GPU usage, however we did not collect these for our

scenario, butwould be able to if required for futureworkflows.

5.2 ApplicationMetrics
There are a number ofmetrics that enable the characterization of the

UAVapplication andhelp determinewhether quality of service (QoS)

is being met. Here we collect monitoring information and use it to

calculatemetrics such as frame rate, network bandwidth, processing

time, and accuracy needed for the application to deliver the needed

QoS. This information is then used to determine the best network

path and edge server to use by the drone for computation offloading.

Metrics:

• Frame Rate: This metric is measured in frames per second

(FPS) and can be applied to characterize the performance of

networking and processing. In the case of streaming video

data, the frame rate can be used to express the capability of

the network. In terms of video analytics, this metric can be

used to evaluate if an algorithm can process a video stream

at a certain frame rate, i.e., in real time.

• Processing time: This metric will measure the time it takes

to create detections by the video analytics application. This

will allow us to evaluate under which conditions this process

can be executed in real time.

• Detection Accuracy: We use the number of object detections

per frame and compare it with the ground truth to determine

the detection accuracy in terms of confidence scores. These

confidence score values are then used to compare the quality

of object detections among different video resolutions in our

evaluation experiments.

5.3 Network Path and Edge Compute Selection
As described in Sect. 4.1, the resources required for the video an-

alytics workflow can be selected from several network links and

edge compute nodes. For example, the UAVmight be in the coverage

area of several cell towers, and from each tower, there are paths to

multiple candidate edge nodes. Simply using the shortest path to the

closest edge node will not always be the best choice. Available band-

width might be lower on the shortest path than on alternative paths

or the selected edge node might have a high competing network

and/or compute load, be temporarily unavailable, or lack required

hardware for an application. Both simulated and measured resource

metrics described in 5.1 are used as input to the edge compute selec-

tion module. At each iteration of the drone flight update, new values

are generated and queried and fed into the utility calculation along

with the application requirements.We experimentedwith twoutility

functions: one giving more weight to the load at the edge and one

prioritizing the bandwidth to the edge. In the case of streaming video

frames, prioritizing the available bandwidth to the edge device over

the load results in a 30 percent improvement in frames per second

transmission as can be seen in Fig. 6. This is the case because video

streaming is not a heavily compute intensive process. For other appli-

cations, alternative utility functions may be more appropriate. The

FlyNet framework and system enables this type of experimentation.

5.4 Architectural Choices
Duringflight, thecameraon thedronegeneratesvideo footage.Based

on the capabilities of the video camera and encoder settings a video
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Figure 7: The impact of video resolution and processing unit
type (CPU vs. GPU) on video processing performance in
frames per second (FPS).

stream of varying resolutions (160p, 320p, 480p, etc.) and frame rates

(10 fps, 30 fps, 60 fps, etc.) can be created. In our first analysis for the

drone video analytics workflow, we evaluate its performance based

on the processor type and network conditions. Such information is

required to inform the allocation of underlying resources for a par-

ticular workflow. For example, a video analytics application might

require a specific resolution or frame rate to achieve a minimum de-

tection accuracy. Based on that information the necessary compute

and networking resources can be allocated.

For this experiment the video is streamed via ffmpeg from a node

that emulates a drone to a node that hosts the Docker container in

which the video analytics application runs. While the frame reso-

lution is varied we observe the frame rate at which the application

can process the incoming data. Figure 7 shows that the frame rate is

mainly impacted by the resolution of the video frames and the pro-

cessing unit used (CPU vs. GPU) to execute the application. Thus, if a

certain frame rate is required, this can either be achieved by running

the application on a GPUwith higher resolution frames or on a CPU

with lower resolution frames. These results also inform the resource

selection described in Sect. 4.1. For example, if alternative edge nodes

are available and the free capacity of these nodes is known, the one

that matches the application requirements best can be selected.

5.5 Resolution &Detection Confidence
While lowering the resolution of a video is certainly an option to

achieve a specific end-to-end frame rate (see Sect. 5.4), the impact

in terms of detection confidence has to be taken into consideration.

We conducted an experiment (solely on the processing side of the

workflow) in which the image resolution of the individual frames

ingested by the video analytics algorithmwas varied from 160p up to

1080p. This experiment was conducted on an Intel(R) Xeon(R) CPU

E5-2670 v3 at 2.30GHz in an x86_64 architecture, 48 CPUs per node,

125GB total memory, and equipped with 3x Nvidia V100 GPUs for

running video analytics on the Darknet deep neural network. As a

metric, we used the confidence with which the algorithm detected a

certain type of object. Fig. 8 shows that in the 1080p case actual traffic

lights are detected as traffic lightswith a confidenceofmore than95%.

Further analysis of Fig. 8 shows that the confidence depends on the

object type (car, truck, traffic light, person) and the image resolution.

The results also show that, apart from the exception of the truck

object, the confidence of a detection stays relatively stable down to

an image resolution of 480p. This coincides with the results from

Sect. 5.4, where a frame rate of 25 fps or higher can be maintained

at 480p resolution if video analytics is performed on a GPU.
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Figure 8: The impact of resolution on detection confidence.
5.6 Video Streaming

Under Various Network Bandwidths
During the drone video streaming process, it is critical that the

available bandwidth on the path between the drone and the edge is

sufficient to allowdata transmissionat anappropriate frame rate.Not

meeting this requirement can negatively impact video processing

and object detection and tracking. To identify the ideal bandwidth re-

quired to stream videos encoded in different resolutions we perform

the following evaluation. A video with a fixed frame rate (25 FPS) is

streamed from the drone to the edge while the available bandwidth

is set to eight different values. At the streaming client (edge node),

we evaluate the resulting FPS based on the available bandwidth.

As shown in Fig. 9, the frame rate of 25 fps can be sustained if the

available bandwith is greater than 1 Mbps.

From Figure 9, we can also see that the network bandwidth has a

significant influence on the streaming quality represented by the FPS

values. Specifically, when the bandwidth drops below 2Mb/s for the

1080p video resolution, 1Mb/s for the 768p resolutions, and 500Kb/s

for all the other lower resolutions, the video streaming is hugely
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impaired, and thus the FPS received on the edge node decreases sig-

nificantly. As the network bandwidth drops even lower, so does the

frame rate. From the results, we can see that a network bandwidth

at 1Mb/s is sufficient for streaming drone videos in most resolutions,

i.e., ranging from 160p to 768p, to achieve the native FPS of the orig-

inal video, which in this case is 25. However, in the case of 1080p

resolution we did notice that we were not able to achieve the native

25 FPS, even in the case of the maximum link bandwidth (which is ∼
24Gb/s in Chameleon cloud network). We attribute this result to the

much larger video frame size (in terms of storage), which requires

more time to be written to the local file system of the edge node.

5.7 Network Loss
Packet loss affects all networks, however, it is particularly common

in wireless network links, where packet losses can occur more fre-

quently due to interference, low signal-to-noise-ratio, and other

effects. Since at least the first hop in the end-to-end path between a

droneand the respective receiverwill beawireless linkweperformed

an experiment where packet loss was induced. In this scenario, we

used tc to induce a worst case of 10% packet loss during the trans-

mission of a 1080p video. To evaluate the impact of packet loss we

compare the number of detections whenwe have a lossless transmis-

sion with one that has a 10% packet loss. Fig. 10 shows unambiguous

results. While the number of detections is decreasing for most ob-

jects in the case of packet loss, the number of detections for the type

“truck” is increasing. In the latter case, we conjecture that it is an

effect caused bymislabeling. Thismeans, that actual objects like cars

and buses get mislabeled as trucks. In future work, we plan to repeat

this evaluation with labeled data to be able to clearly distinguish

between mislabeling and missing an object completely.

6 RELATEDWORK
Edge Computing. Recent work is focusing on the support of IoT

applications through edge computing, where computation can be

offloaded from the device to compute resource located at the edge

of the network (which is much closer to the devices than any cloud

resource). A comprehensive overview on resource management for

edge computing with a focus on IoT support is presented by Hong

and Varghese [16]. While edge computing is a very broad research

area, we focus on the related work that emphasizes on the use of

edge computing to support drone-based applications. Zhou et al. [43]
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Figure 10: Impact of packet loss on number of detections.

present a survey on computational offloading for drone-based appli-

cations. This survey shows that a significant portion of the existing

work focuses on using drones as part of the network infrastructure

to offload data from IoT devices at remote locations. The work pre-

sented in this paper is different since drones act also as data sources

(video data) and significant computational resources are used to

process the data. More closely related to our work is the work pre-

sented by Hayat et al. [15]. In their work, drones generate video

data which is used for navigation. Their study analyzes the trade-off

between different computation models (drone, hybrid, edge), which

shows the offloading is only beneficial if the compute power of the

edge node is significantly higher than the one of the drone. In recent

work, we conducted preliminary studies to understand the benefits

of a policy-based offloading scheme [12, 30]. In these studies, we

used an object tracking application similar to the one in Figure 1

involving real-time video analytics in geo-distributed areas to meet

user quality of experience (QoE) expectations.

The approach presented in this paper is complementary to the

works presented above since it focuses on automatically provision-

ing of edge and cloud resources and deploying the necessary services

to easily generate the platform that drone applications depend on.

Resource provisioning and networking for science applica-
tions. There have been extensive survey papers [13, 19] in regards
to provisioning IaaS cloud resource for scientific workflows. Wang

et al. [39] propose an approach to build and run scientific workflows

on a federation of clouds using Kepler and CometCloud. Moreover,

therehavebeen strategies forworkflowsystems todeployvirtualma-

chines in the cloudwith limited support for on-demand provisioning

and elasticity, which are essential for the drivingUAV applications in

this work. Ostermann et al. [28] discussed a set of VM provisioning

policies to acquire and release cloud resources for overflow grid jobs

fromworkflows, and characterized the impact of those policies on

execution time and overall cost. In prior work [20], we presented

dynamic provisioning techniques that spawn resources based on

compute elasticity using Mobius [24].

On the perspective of networking between the compute, storage

and instrument sites,Macker et al. [22] describeworkflowparadigms

to address network edge workflow scenarios.

Our work presented in this paper differs from the above by pre-

senting easy-to-use, on-demand resource provisioning mechanisms

for data movement and edge and cloud compute provisioning for

UAVapplications.Weprovidededicatednetworkconnectionsamong

multiple cloud provider sites, and leverage unique resource provi-

sioning mechanisms that instantiate KubeEdge environments on

clouds with advanced network setups.



Video Analytics. Drones that provide video footage are increas-

ingly relying on video analytics applications that require HPC re-

sources and real-time communications. Rao et al. [31] proposed an

approach based on microservics that supports drone operators in

performing video analytics. These are used to asses wide area scenes

and help develop a plan of action. However, due to latency require-

ments and limited network bandwidth, UAV applications adaptively

compress the data to strike a balance between overall analytics ac-

curacy and bandwidth consumption, as demonstrated in several

recent publications [30, 33]. Our proposed solution extends the idea

of utilizing edge servers to enhance video analytics applications

by applying complex learning-based video analytics such as object

detection, categorizing, recognition and tracking.

7 CONCLUSIONS AND FUTUREWORK
In this paper, we present the FlyNet system, which supports scien-

tific workflows from the edge to the core for UAV applications. We

identify the challenges that UAV applications pose to design and

implement such a system. These challenges focus on the integration

of edge computing resources, next generation networks, and core

cloud resources, such that drone-related, scientific workflows can

performwith very little latency and high reliability. We present an

architecture that treats IoT devices (like drones) and edge servers as

first-class citizens of scientific workflows. We then present the over-

all FlyNet system that performs automated resource provisioning

and service deployment. Through evaluation of the systemwith an

important application class - drone video analytics - we demonstrate

the challenges the establishment of such application workflows face.

The results show that the appropriate or inappropriate selection

of resources can have significant impact on the application per-

formance. These results clearly uncover a new challenge for the

orchestration of scientific workflows such as: How can the resource

selection for scientificworkflows be sufficiently abstracted such that

domain scientists can allocate an appropriate set of resources from

the edge-to-core computing continuum tooptimize theirworkflows?

In future work, we plan to continue to address these challenges.

In particular, we will extend the edge compute resource allocation

capability to be location aware such that researchers can request pro-

cessing nodes in geographic proximity to their applications without

needing to look up and specify sites in advance. In addition, we shall

investigate the use of information-centric networking concepts to

facilitate data transfers from the edge devices to the local resources

without requiring known and dedicated IP addresses. With such an

approach the data transfer model can be inverted. Rather than push-

ing video data for processing to a location that has to be determined

upon creation of a workflow, processing nodes can query content

(e.g., video frames) without having to address end systems. This may

assist in addressing challenges associated with the migration to 5G

where network handoffs may occur very quickly as cellular range

decreases and the number of cellular towers increases.
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