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Abstract Computational science depends on complex,

data intensive applications operating on datasets from

a variety of scientific instruments. A major challenge

is the integration of data into the scientist’s workflow.

Recent advances in dynamic, networked cloud resources

provide the building blocks to construct reconfigura-

tion, end-to-end infrastructure that can increase scien-

tific productivity, but applications are not taking ad-

vantage of them. In our previous work, we introduced

DyNamo, that enabled CASA scientists to improve the

efficiency of their operations and effortlessly leverage

capabilities of the cloud resources available to them

that previously remained underutilized. However, the

provided workflow automation did not satisfy all the op-

erational requirements of CASA. Custom scripts were

still in production to manage workflow triggering, while

multiple layer2 connections would have to be allocated

to maintain network QoS requirements. To address these

issues, we enhance the DyNamo system with advanced

network manipulation mechanisms, end-to-end infras-

tructure monitoring and ensemble workflow manage-

ment capabilities. DyNamo’s Virtual Software Defined

Exchange (vSDX) capabilities have been extended, en-

abling link adaptation, flow prioritization and traffic

control between endpoints. These new features allow
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us to enforce network QoS requirements for each work-

flow ensemble and can lead to more fair network shar-

ing. Additionally, to accommodate CASA’s operational

needs we have extended the newly integrated Pegasus

Ensemble Manager with event based triggering func-

tionality, that improves managing CASA’s workflow en-

sembles. The Pegasus Ensemble Manager, apart from

managing the workflow ensembles can also create con-

ditions for a more fair resource usage, by employing

throttling techniques to reduce compute and network

resource contention. We evaluate the effects of the Dy-

Namo’s vSDX policies by using two CASA workflow en-

sembles competing for network resources, and we show

that traffic shaping of the ensembles can lead to a fairer

sharing of the network links. Finally, we study how

changing the Pegasus Ensemble Manager’s throttling

for each of the two workflow ensembles affects their

performance while they compete for the same network

resources, and we assess if this approach is a viable al-

ternative compared to the vSDX policies.

Keywords network-centric platform, malleable data

flows, distributed cloud infrastructure, scientific

workflow automation, dynamic network and resource

provisioning, virtual software defined exchange,

ensemble manager, ensemble throttling, adaptive

weather sensing

1 Introduction

Computational sciences rely on complex, data-intensive

applications to manage the processing of distributed

datasets that are produced by a diverse set of scientific

instruments and reside in geographically scattered loca-

tions. One of the biggest challenges these applications
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face, is the efficient data movement between the hetero-

geneous compute and storage resources, and the inte-

gration of the data into the scientists’ workflows. These

workflows might depend on specialized resources, such

as hardware accelerators (e.g., GPUs and FPGAs), that

are available in different compute locations, require ac-

cess to input data hosted under different domains, and

produce a significant amount of intermediate data that

have to be transferred between tasks to facilitate their

execution. To accommodate the needs of these scientific

applications and increase scientific productivity, two or

more infrastructure domains must be integrated and

offered transparently to the scientists. Mechanisms to

support this integration are currently not readily avail-

able, and scientific communities that require such inte-

gration have resorted to their own custom solutions that

don’t provide flexibility to generalize their approach.

However, recent advances in dynamic networked cloud

infrastructure, such as ExoGENI [1], provide the techni-

cal building blocks to construct and manage such inte-

grated, reconfigurable, end-to-end infrastructure, built-

to-order with isolated resources that satisfy workflow

compute and data movement requirements.

Data-driven applications and workflows have not

adequately taken advantage of the rich set of capabili-

ties offered by a new set of dynamic, networked infras-

tructures. They are not designed to utilize adaptive fea-

tures offered by state-of-the-art, networked cloud infras-

tructures, especially with respect to managing end-to-

end, high-performance data flows. As a result, domain

scientists in weather modeling, ocean sciences, seismol-

ogy, etc., struggle to analyze data available in commu-

nity resources. They often download the data to their

own environment, processing it at limited scales in mod-

est chunks, losing crucial time to react to the observed

phenomenon and/or missing longitudinal patterns.

Additionally, managing the execution of workflow

ensembles over the sophisticated inter-domain infras-

tructures remains a significant challenge. Traditional

workflow management approaches make use of stat-

ically provisioned, dedicated, pre-configured compute

and network infrastructure. Such approaches are often

associated with high cost, since the resources are usu-

ally provisioned such that the highest workload can be

handled. This imposes extra cost when the system stays

idle. Therefore, the bursty computational and network

demands for science workflows warrant flexible process-

ing solutions on diverse infrastructures for computing,

and malleable, high-performance data movements for

efficient data delivery.

In a previous work, we presented the DyNamo sys-

tem [2] which addresses the above challenges and we

focused on its networking capabilities that enable high-

performance, adaptive, performance-isolated data-flows

across a federation of distributed cloud resources and

community data repositories. Even though this system

introduced a robust way of connecting distributed data

repositories to cloud compute resources with guaran-

teed performance, and automated the deployment of

weather modeling workflows, it didn’t address all the

operational needs of weather modeling scientists.

In this paper, we extend the DyNamo system with

more advanced capabilities in layer2 network resource

allocation. We integrate DyNamo with the virtual Soft-

ware Defined Exchange (vSDX) [3] architecture, which

serves as a virtual interconnect among different domain

infrastructures providing flexible, high-performance data

transfer over dedicated network circuits. Additionally,

we enhance the workflow management capabilities of

DyNamo with a workflow ensemble manager featur-

ing automatic triggering of workflow ensembles and im-

proved ensemble control. We also introduce a third party

tool for end-to-end infrastructure monitoring and visu-

alization.

Specifically, in this paper we make the following con-

tributions:

– We present a data-driven science application, named

Collaborative Adaptive Sensing of the Atmosphere

(CASA), and describe its revised requirements and

challenges that need to be addressed by the Dy-

Namo system.

– We briefly present the architectural components of

the DyNamo system, which provides federated in-

frastructure support to enable malleable,

high-performance data flows between diverse, dis-

tributed, national-scale research cloud platforms (Ex-

oGENI [1] and Chameleon [4]) and the CASA data

repository.

– We present the architecture of the vSDX network in-

frastructure, which enables high-performance data

transfer among heterogeneous compute and storage

infrastructures, and we describe the newly intro-

duced functionality that allows link adaptation, flow

prioritization and traffic shaping.

– We present new features of the Pegasus Ensemble

Manager that enable event based workflow trigger-

ing, and discuss how CASA’s workflow ensembles

can benefit from its functionality

– We provide an in-depth evaluation and analysis of

the network performance on the inter-domain, multi-

cloud infrastructures. While network resource shar-

ing is unavoidable, we discuss how DyNamo can cre-

ate an environment that promotes a more fair uti-

lization of the network resources either by employ-

ing features of the vSDX component or the Pegasus

Ensemble Manager.



Fair Sharing of Network Resources Among Workflow Ensembles 3

The rest of this paper is organized as follows: Sec-

tion 2 provides an overview of the related work. Sec-

tion 3 discusses background information for the Dy-

Namo components. Section 4 introduces the compo-

nents of the CASA weather forecasting application. Sec-

tion 5 presents the extended components that work

together to support science workflows. In Section 6,

we evaluate the performance of the DyNamo ensem-

ble manager and of the enhanced DyNamo networking

features. Finally, Section 7 concludes the paper.

2 Related Work

Cloud services allow users to easily spawn and dismiss

resources around the globe upon their realtime needs.

With its great flexibility, cloud computing has rapidly

emerged as one of the most popular approaches for com-

pute intensive and data intensive applications. There

has been extensive prior work on the topics of cloud

support for various types of science applications. In

this section, we review the related works, which can be

classified into three categories: cloud platforms, inter-

domain networking and compute infrastructure provi-

sioning for science workflows, and science workflow man-

agement systems.

Cloud platforms. A lot of work has been done on

the development of research and commercial cloud in-

frastructures. A number of public cloud providers, such

as Amazon EC2 [5] and Microsoft Azure [6], offer IaaS

abstractions and some ability to orchestrate them to-

gether with networks through mechanisms like Cloud-

Formation [7] and Heat [8]. However, data movement

among different cloud providers and infrastructures is

expensive and hard to implement, which significantly

limits the use of commercial clouds in science applica-

tions [9]. The Globus [10] project provides users the

ability to efficiently move data from one computing re-

source to another, however, it does not provide unified

environments for science workloads. In the work pre-

sented in this paper, we focus on integration of scal-

able, reconfigurable distributed testbeds, including Ex-

oGENI [1] and Chameleon [4] with emphasis on data

movement and optimization of network resource shar-

ing.

Inter-domain networking and compute infras-

tructure provisioning for science workflows. Re-

source management and provisioning for distributed ap-

plications has been the subject of many research ef-

forts. There have been extensive survey papers [11–13]

in regards to provisioning IaaS cloud resource for sci-

entific workflows. Wang et al. [14] propose an approach

to build and run scientific workflows on a federation of

clouds using Kepler and CometCloud. Moreover, there

have been strategies for workflow systems to deploy vir-

tual machines in the cloud with limited support for on-

demand provisioning and elasticity, while none or min-

imal support to infrastructure optimization is enabled.

Ostermann et al. [15] discussed a set of VM provisioning

policies to acquire and release cloud resources for over-

flow grid jobs from workflows, and characterized the

impact of those policies on execution time and overall

cost. In prior work [2], we presented dynamic provision-

ing techniques that spawn resources based on compute

elasticity using Mobius [16].

On the perspective of networking between the com-

pute, storage and instrument sites, Macker et al. [17]

describe workflow paradigms to address network edge

workflow scenarios. Ramakrishnan et al. [18] present

experience for virtualized reservations for batch queue

systems, as well as coordinated usage of TeraGrid, Ama-

zon EC2 and Eucalyptus (cloud) resources with fault

tolerance through automated task replication. Liu et

al. [19] developed the Virtual Science Network Envi-

ronment (VSNE) that emulates the multi-site host and

network infrastructure, wherein software can be tested

based on mininet with SDN capabilities.

As an important factor, many of the prior works

have thrived to achieve a satisfactory Quality of Ser-

vice (QoS) for the provisioned resources, as indicated by

many recent survey papers [20,21]. Varshney et al. [21]

proposed QoS based workload scheduling mechanism

by considering energy consumption, execution cost and

execution time as QoS parameters. The Department

of Energy’s ESNet has proposed an On-Demand Se-

cure Circuits and Advance Reservation System [22],

which provides software system for booking time and

resources on high-speed science networks used by large

teams of researchers to share vast amounts of data.

Our work presented in this paper differs from the

above by presenting easy-to-use, on-demand resource

provisioning mechanisms for malleable data movement

and compute provisioning for inter-cloud workflows. We

provide dedicated network connections among multiple

cloud provider sites with guaranteed performance and

QoS policies enforced by a virtual software defined ex-

change (vSDX).

Science workflow management systems. Sev-

eral workflow management systems focus on the opti-

mization of science application management on cloud

platforms. Islam et al. [23] presented a scalable work-

flow management system specifically for Hadoop ap-

plications. Senturk et al. [24] deal with bioinformatics

applications on multi-clouds with a focus on resource

provisioning. Malawski et al. [25] presented cost opti-

mization modeling for scheduling workflows on public

clouds to minimize the cost of workflow execution un-
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Fig. 1 Mobius - Network Centric Platform Overview.

der deadline constraints. Abrishami et al. [26] presented

workflow scheduling algorithms based on partial critical

paths, which also optimize for cost of workflow execu-

tion while meeting deadlines. With the rise of multi-

clouds, many workflow management systems have fo-

cused on this type of platform. Matthew et al. [27]

discuss workflow management on multi-cloud broker-

ing among multi-cloud domains with heterogeneous se-

curity postures. In this paper, we propose a new ap-

proach to enable dynamic resource provisioning in the

clouds, which is integrated with a workflow manage-

ment system coupled with advanced workflow ensemble

management, and demonstrated through deployments

with science applications.

3 Background

3.1 Pegasus WMS

Pegasus [28] is a popular workflow management system

that enables users to design workflows at a high-level

of abstraction. The Pegasus workflow descriptions are

independent of the resources available to execute the

workflow tasks and are also independent of the location

of data and executables. Pegasus transforms these ab-

stract workflows into executable workflows that can be

deployed onto distributed and high-performance com-

puting resources such as Leadership Computing Facili-

ties (e.g., NERSC [29] and OLCF [30]), shared comput-

ing resources (e.g., XSEDE [31], OSG [32]), local clus-

ters, and commercial (e.g., Amazon AWS [33]) and aca-

demic clouds (e.g., ExoGENI [1], Chameleon [34]). Dur-

ing the compilation process, Pegasus performs data dis-

covery, locating input data files and executables. Data

transfer tasks are automatically added to the executable

workflow and perform two key functions: (1) move in-

put files to staging areas associated with the target

computing resources, and (2) transfer the generated

outputs back to a user-specified location. Additionally,

data cleanup (removal of data that is no longer required

by the workflow at the execution site) and data registra-

tion tasks (that catalog the output files) are also added

to the workflow. To manage user data, Pegasus inter-
faces with a wide variety of backend storage systems

that use different data access and transfer protocols.

Pegasus relies on HTCondor [35] DAGMan as its

workflow execution engine to run and manage the gen-

erated executable workflows. DAGMan in turn, submits

the workflow jobs, as they become ready to run (when

all parent jobs have completed successfully) to the in-

ternal job queue managed by HTCondor. During work-

flow execution, provenance information from workflow

and job logs is automatically parsed and stored in a

relational datastore by a monitoring daemon [36].

3.2 HTCondor

HTCondor [35] is a comprehensive job management sys-

tem. In contrast to other batch systems such as PBS [37]

and SLURM [38], it is particularly suited for distributed

high throughout computing (HTC) environments, where

one can setup a compute pool of nodes connected over
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Fig. 2 Dynamo framework

a local area network or a wide area network. HTCondor

provides users with a local job queue managed by a dae-

mon HTCondor Schedd to which users submit jobs. Fur-

thermore, HTCondor supports matchmaking [39] that

allows users to match their jobs with compute nodes

that support specific resources. The matchmaking takes

place during the negotiation of the resources and is

based on HTCondor ClassAds advertised by the com-

pute nodes. Finally, in addition to submitting jobs to

HTCondor managed compute resources, HTCondor also

provides a component, called HTCondor-G [40], that al-

lows users to submit jobs to other types of schedulers.

3.3 Mobius

A network-centric platform called Mobius [41] depicted

in (Figure 1) includes (a) support for integrated, multi-

cloud resource provisioning and for high-performance

science data flows across diverse infrastructures, and (b)

enhanced mechanisms for interacting with higher level

application and workflow management systems and trans-

forming high-level resource requests to low-level provi-

sioning actions, thereby bridging the abstraction gap

between data-driven science applications and resource

provisioning systems, and (c) transparently maintain

the quality of service of the provisioned end-to-end in-

frastructure through continuous monitoring and con-

trol. Mobius was enhanced in our previous work [2]

to support the provisioning of network connections be-

tween compute resources across sites/clouds and mod-

ulating the bandwidth on these network connections.

3.4 DyNamo

Data-driven workflows need to automatically and flexi-

bly provision resources to satisfy scientists’ bursty com-

putational and network demands. In the case of CASA

workflows (Section 4), the nature of ever-changing weather

events, the number of available sensors, and end user-

defined triggers all contribute to load variability.

As presented in previous work [2], DyNamo enables

CASA scientists to transparently acquire cloud resources

from multiple cloud providers based on high-level re-

source requirements. As depicted in Figure 2, DyNamo

provides network integration and programmatic pro-

visioning of specific cloud resources using their native

APIs. With this approach, domain scientists no longer

need to directly interact with diverse cloud providers.

To achieve this goal, DyNamo brings together the 3 ma-

jor components defined earlier in this section: Pegasus

WMS is used to provide workflow automation to the

applications. HTCondor is used to manage the compu-

tational resources and distribute the computations. Mo-

bius is used to allocate compute and network resources

and create the interconnect between data sources and

execution sites. Later in Section 5, we will present ad-

ditional components for DyNamo, making it an inte-

grated, network-aware instrument and monitoring tool

for data-driven science applications in multi-cloud en-

vironments.

3.5 Target Cyberinfrastructure

In this paper, we make use of two national scale research

cloud providers: ExoGENI and the Chameleon cloud.

– ExoGENI [1] is a networked Infrastructure-as-a-

Service (IaaS) testbed that links 20 cloud sites on

campuses across the US through regional and na-

tional transit networks, such as Internet2 [42] and

ESnet [43]. ExoGENI allows users to dynamically

provision isolated “slices” of compute and network-

ing resources from multiple sites and to integrate

various resources using layer2 global dynamic-circuit

networks like Internet2 and ESnet, and private clouds
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like OpenStack [44]. ExoGENI allows users to in-

stantiate customized, distributed topologies, and by

provisioning the appropriate network resources cor-

responding to the topologies, thereby creating end-

to-end layer-2 paths.

– NSF Chameleon Cloud [34] is a large-scale, deeply

programmable testbed designed for systems and net-

working experiments. Similar to ExoGENI, it lever-

ages OpenStack to deploy isolated slices of cloud

resources for user experiments. However, ExoGENI

scales in geographic distribution, while Chameleon

scales by providing large amounts of compute, stor-

age, and networking resources spread across two sites:

University of Chicago (UC) and the Texas Advanced

Computing Center (TACC). Chameleon provides over

15K cores and 5 PB storage across the two sites.

Users can provision bare metal compute nodes with

custom system configuration connected to

user-controlled OpenFlow switches operating at up

to 100 Gbps. In addition, Chameleon networks can

be stitched to external partners including ExoGENI

slices.

4 CASA - Motivation

The NSF Engineering Research Center for Collabora-

tive Adaptive Sensing of the Atmosphere (CASA) was

formed to study the lower atmosphere with networks of

high resolution Doppler weather radars with the goal

to improve severe weather awareness [45]. The volu-

metric data produced by these continuously operat-

ing remote sensors must be distributed to processing

servers quickly and efficiently such that analysis can

occur in near real time for the sake of warning the pub-

lic to fast developing threats such as tornadoes and high

winds. The networked radar concept requires that asyn-

chronous raw data from multiple sources are blended to-

gether to create value-added meteorological products.

At any given time the characteristics of the ongoing

weather regime determine the necessity and priority of

certain products. For example, a hail detection algo-

rithm takes on high importance only when strong thun-

derstorms are ongoing, whereas forecasting algorithms

may be of more importance well in advance of such se-

vere weather events and perhaps somewhat less so once

the event has started.

For years, CASA’s scientific workflows associated

with product creation have been executed on dedicated

servers existing at individual radar sites and at compute

centers at NOAA Southern Region Headquarters and

at the University of Massachusetts Amherst. Servers

have been assigned dedicated processing tasks carefully

tailored to their hardware and networking resources

through trial and error with estimates made regard-

ing the largest likely compute loads associated with

each task. The careful management required implies

that reconfiguration is highly complex and not feasi-

ble by an operator on short notice during an event.

To help mitigate this limitation, and to create a more

scalable system, in recent years CASA has developed

several containerized scientific workflows for calculat-

ing these weather products that can be deployed and

prioritized as needed [2]. CASA workflows are gener-

ally multi-step processes that can include a collection

of necessary radar and non-radar sensor data access,

grid transformations, format conversions, derived prod-

uct creation, raster image generation, contouring, GIS

based data extraction, and customized notification and

alerting [46]. These require complex scheduling and

in some cases significant resource consumption, espe-

cially during widespread impactful weather when they

take on their greatest utility to the end users. For these

workflows, CASA now relies on Mobius to provision

and modulate compute and networking resources on

demand, and uses the Pegasus Workflow Management

System to manage the execution of the workflow steps [2].

In the following subsections, we briefly introduce

the weather products that are generated by the CASA

workflows studied in this paper.

4.1 Nowcast

Nowcasts are short-term advection forecasts that use

observed reflectivity data from multiple radars, com-

posite them for a certain number of minutes, and project

into the future by estimating the derivatives of mo-

tion and intensity with respect to time [47, 48]. Ev-

ery minute the CASA nowcasting system generates 31

grids of predicted reflectivity, one for each minute into

the future from minutes 0-30. The workflow associated

with Nowcasting creates raster images for all 31 grids

every minute, and also contours for multiple reflectivity

levels on each of these grids. The contours are sent to a

database where they are used for notification purposes

as simplified boundaries containing forecast reflectiv-

ity levels of importance for particular applications such

as route planning, deployment of spotters, and keep-

ing emergency responders out of harm’s way. Nowcast

rasters and contours are sent to CASA’s data reposi-

tory over layer 2 stitchports [1] where they are used in

web and mobile applications.
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4.2 Wind Speed

A Doppler radar is able to estimate the velocity of mov-

ing objects based on a phase shift that occurs if the ob-

jects are moving toward or away from the radar beam.

Components of velocity perpendicular to the beam are

not sensed. For a given radar this means that there will

be substantial underestimations of true wind speed over

portions of the sensing domain where certain directional

components of the winds are not able to be sampled.

However, with an overlapping network of radars (as in

CASA’s case), areas not adequately sampled by one

radar are often better sampled by other radars with

different relative angles. Therefore CASA’s maximum

observed velocity workflow ingests the single radar base

data from all of the radars in the network and creates

a gridded product representing the maximum observed

wind speeds. As part of this workflow, areas of severe

winds are identified, contoured, and checked against

the location of known infrastructure, with email alerts

sent out to locations likely to be affected. Workflows

that use the large single radar raw data as input have

a substantially higher network bandwidth requirement

than those operating on derived data. Input rates of

over 100Mbps are common, and given that high winds,

which are associated with tornadoes and downbursts

are often short lived, one must minimize transmission

delays as much as possible to adequately provide warn-

ings for users downstream of the observations.

5 Approach - DyNamo Extensions

In order to accommodate different application QoS poli-

cies and make a more efficient and fair use of the infras-

tructure among the workflow ensembles, we are extend-

ing the DyNamo system (Figure 2) with a more sophis-

ticated network configuration component, end-to-end

infrastructure monitoring and advanced workflow man-

agement techniques.

5.1 vSDX module

A Virtual Software Defined Exchange (vSDX) is defined

as a virtual interconnect point between multiple adja-

cent domains, e.g, instruments, compute resources, or

data/storage systems. Like a static SDX, a vSDX uses

Software Define Networking (SDN) within the exchange

to enforce different network policies.

In our case, the vSDX support is provided by the

ExoPlex [49] network architecture depicted in (Figure 3).

ExoPlex uses an elastic slice controller to coordinate

Fig. 3 Virtual Software Defined Exchange (SDX) Network
Architecture

dynamic circuits and the Zeek (formerly Bro) [50] se-

curity monitors via Ahab [51]. The controller runs out-

side of the vSDX slice and exposes a REST API for

clients to request network stitching and connectivity

and to express QoS parameters. Clients (i.e. Mobius)

invoke this API to bind named subnets under its con-

trol to the vSDX via L2 stitching and request band-

width provisioned connectivity with other subnets. The

vSDX slice is comprised by virtual compute nodes run-

ning OpenVSwitch [52], OpenFlow controllers [53], and

Zeek traffic monitors. Traffic flow and routing within

the vSDX slice are governed by a variant of the Ryu [54]

rest router [55] SDN controller. The vSDX slice con-

troller computes routes internally for traffic transiting

through the vSDX network, and invokes the SDN con-

troller API to install them. The SDN controller runs

another Ryu module (rest ofctl) to block traffic from

offending senders. If a Zeek node detects that traffic

violates a Zeek policy, it blocks the sender’s traffic by

invoking a rest ofctl API call via the Zeek NetControl

plugin.

As client requests for bandwidth provisioned con-

nectivity arrive at the vSDX, the slice controller instan-

tiates slice resources as needed to carry the expected

traffic. These resources include peering stitchport inter-

faces at each point of presence (PoP), the OVS nodes

that host these vSDX edge interfaces, Zeek (Bro) nodes

to monitor the traffic, and backplane links to carry the

traffic among the PoPs. The controller reuses existing

resources in the slice if they have sufficient idle capacity

to carry the newly provisioned traffic, and instantiates

new resources as needed. In particular, it adapts the

vSDX backplane topology by allocating and releasing

dynamic network circuits as needed to meet its band-

width assurances to its customers. The flows are in-

spected by out of band Zeek network security moni-

tor appliances to detect intrusion. As a simple form of

intrusion prevention, it uses Zeek’s NetControl frame-

work to interrupt all traffic from the source of a suspect

flow. The vSDX controller deploys Zeek instances elas-

tically to scale capacity.
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Fig. 4 Pegasus-EM Web File Trigger Example

In our scenario, the Exoplex Slice controller [56]

runs as a docker container. Mobius has been enhanced

to communicate with the ExoPlex Slice controller via

its REST API to establish network connectivity be-

tween ExoGENI and Chameleon via layer2 networks

and to allocate bandwidth to individual workflows. Once

connectivity is established, Mobius triggers REST API

calls to publish network prefixes, sets up routes be-

tween network prefixes and dynamically applies differ-

ent bandwidths as needed. Additionally, we have im-

plemented a Python based interface that can be used

to provision the required resources. This interface en-

ables programmatic resource provisioning and is capa-

ble of spinning up resources, establishing connectivity

and implementing network QoS policies on a per work-

flow ensemble level.

5.2 Pegasus Ensemble Manager

The Pegasus WMS can manage collections of related

workflows, commonly referred to as ensembles, through

a service called the Pegasus Ensemble Manager (Pegasus-

EM) [57]. Pegasus-EM supports ensemble creation, work-

flow prioritization, workflow submission, throttling of

concurrent executions, and ensemble level monitoring

capabilities.

To support dynamic execution of workflow ensem-

bles based on the continuous flow of data obtained from

various sources, we have have extended Pegasus-EM

with workflow triggering capability that supports three

triggering modes (a) cron, (b) monitoring for local files,

and (c) monitoring for web files.

– cron: This mode is similar to a cron job. On a prede-

fined interval specified during the trigger’s creation,

Pegasus-EM executes a user-defined script that gen-

erates a new Pegasus workflow, which is in turn

added to the targeted ensemble.

– monitoring local files: In this mode Pegasus-EM

monitors a local directory for new files. Based on

Fig. 5 Grafana Dashboard depicting Prometheus Metrics

an interval specified during its creation, it checks

for new files that match a file pattern and passes

them to a user-defined workflow generation script

that dynamically creates and plans a Pegasus work-

flow based on the incoming data. Pegasus-EM exe-

cutes the workflow generation script and queues up

the generated workflow for execution.

– monitoring web files: This triggering mode is sim-

ilar to the local file mode. In this case, however,

Pegasus-EM will monitor a remote web location

(HTTP) for new files that match the provided file

patterns.

An example of a Pegasus-EM trigger monitoring for

web files is presented on Figure 4. In the definition of

the trigger the following parameters need to be speci-

fied.

– ensemble: The targeted ensembe to which Pegasus-

EM will queue up the new workflow

– trigger: A unique name for the trigger

– interval: The polling period that Pegasus-EM will

check for changes

– script: User-defined script that handles workflow gen-

eration

– web location: Web url of the remote repository

– file patterns: A list of regex patterns that will be

checked against the file names

– timeout: After an optional timeout time has elapsed

and no new files have appeared, the trigger will be

deleted

– args: An optional parameter for any extra argu-

ments that need to be passed to the user-defined

script

5.3 Prometheus Monitoring

The Prometheus monitoring system [58] has been added

to the DyNamo ecosystem. Mobius automatically con-

figures the Prometheus node exporter [59] on each com-

pute node to push system metrics to a Prometheus
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Fig. 6 CASA Nowcast Pegasus Workflow.

server hosted at RENCI. The metrics collected by

Prometheus give us the opportunity to dynamically take

actions to ensure the infrastructure QoS. The actions

include enabling compute, storage and network elas-

ticity, i.e., growing and shrinking compute or storage

resource pools and increasing or decreasing network

properties of links. To visualize the collected data in

a comprehensive and easy to understand way, an in-

stance of Grafana [60] has been configured to pull the

metric data from Prometheus and plot various graphs

on a dashboard depicted in Figure 5.To persist the data

for long periods of time, we store the Prometheus col-

lected metrics into an Elasticsearch [61] instance.

5.4 Operational Effect on CASA’s Workflows

CASA workflows, due to their nature, can benefit from

all of these enhancements to the DyNamo framework.

As described in Section 4, CASA workflows need to pro-

cess and respond to a continuous flow of weather radar

data arriving at different rates. With the additions to

the Pegasus-EM, CASA workflows can be started au-

tomatically as new files arrive at CASA’s remote data

repositories, with direct support by the DyNamo frame-

work. In the past, this functionality was implemented

using perl scripts that were invoked manually at the

processing initiation stage. On top of this Pegasus-EM

can alleviate pressure from the compute and network

resources via its throttling mechanisms, by limiting en-

sembles that can flood the resources and allowing other

ensembles to compete for their fair share. Moreover,

with the introduction of the vSDX capabilities CASA

workflow ensembles can now share the same layer2 link

in an isolated fashion. I.e, traffic from one workflow

can only consume the maximum assigned bandwidth

without impacting the network resources assigned to

other workflows. CASA’s workflows have different re-

quirements that not only depend on the data being

unzip unzip unzip

radar_1.netcdf

radar_1.netcdf.gz radar_2.netcdf.gz

radar_2.netcdf radar_N.netcdf
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Fig. 7 CASA Wind Pegasus Workflow.

processed and the pipeline, but also the workflow con-

figuration. With the vSDX, CASA can reserve a single

layer2 circuit to its data repository while distributing

the network bandwidth based on the network subnet

each worker node resides in. Each worker is assigned

a specific CASA workflow ensemble by advertising a

target workflow tag in its HTCondor advertisements.

Previously this functionality was supported by reserv-

ing multiple layer2 circuits on CASA’s data repository,

but due to the limited number of the available links this

couldn’t be achieved consistently.

6 Evaluation

6.1 CASA Pegasus Workflows Description

For the evaluation of the QoS impact we have selected

two CASA workflows that produce nowcasts and wind

speed estimates as described in Section 4. The work-

flow tasks include input data collection and product

generation, visualization, contouring into polygon ob-

jects, spatial comparisons of identified weather features

with infrastructure, and dissemination of notifications.

Nowcast. The Pegasus Nowcast workflow [62] com-

putes short-term advection forecasts, as described in

Section 4.1, by splitting grided reflectivity data into 31

grids and computing reflectivity predictions over the

next 30 minutes. An abstract version of the workflow’s

DAG is presented in Figure 6, which reveals that the

size of the workflow doesn’t depend on the input, and

the number of compute tasks is fixed. The nowcast

workflow contains 63 compute tasks in total, 1 task for

splitting the input data into 31 individual grids, and

then 62 independent tasks that compute the reflectivity

and the respective contour images. All tasks run within
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Fig. 8 CASA vSDX workflow deployment.

a Singularity container that is managed by Pegasus and

has a size of 153MB.

Wind. The Pegasus Wind Speed workflow [63] com-

putes the maximum wind velocity, by combining multi-

ple single radar output to account for single radar mea-

surement inaccuracies (Section 4.2). An abstract ver-

sion of this workflow’s DAG is depicted in Figure 7. To

construct the input for the wind speed pipeline (pre-

processing phase), single radar data files are accumu-

lated over a variable time window (minimum 1 minute),

which regulates how often CASA produces maximum

wind velocity contours, but also affects the size of the

input of a single workflow run. As a result the first level

of tasks (unzipping any zipped files) in the wind speed

workflow (Figure 7) depends on the number of input

files, and thus the workflow has a variable number of

tasks. The unzipping phase is followed by four compute

tasks that output the wind products and notify points

of interest for severe weather. These four tasks are run-

ning within a Singularity container, 163MB in size.

Workflow Testcases. To conduct our evaluation, both

workflows are processing 30 minutes of pre-captured

real weather data, which we replay as if they were arriv-

ing in real-time to simulate a production scenario from

CASA’s operations. The individual files consumed by

the nowcast workflow are 9.6MB in size and the total

size is 287MB. On the other hand the dataset for the

wind workflows is comprised by files with individual size

of ~12MB, and the total dataset size is ~6GB. For the

two workflows we replay the data using an accumula-

tion interval of 1 minute and we are using Pegasus-EM

to identify the newly added files and queue nowcast or

wind workflow to their respective ensembles.

6.2 Experimental Infrastructure

For evaluation, we used the DyNamo system to deploy

a production scenario that is similar to CASA’s day

to day operational radar data processing setup, and

spreads across both ExoGENI and Chameleon testbeds

(Figure 8). In our setup Mobius and the vSDX con-

troller are running within Docker containers at our USC

Information Sciences Institute (ISI) Docker cluster.

Additionally, we are using one of CASA’s opera-

tional nodes at the University of North Texas (UNT)

in Denton, TX, to host the data and submit the Pegasus

workflows. The vSDX nodes and the workflow master

node are located on ExoGENI at the University of Mas-

sachusetts Amherst (UMass) rack, on separate slices,

while the compute nodes are located on Chameleon at

TACC. To establish the layer2 connectivity between the

sites, Mobius “stitched” the UNT server to the work-

flow master node and instructed the vSDX controller

to stitch the same node to the Chameleon nodes via

the vSDX slice. The Chameleon compute cluster con-

tains 5 nodes, 4 compute nodes and 1 storage node.

3 of the compute nodes reside in the 192.168.40.0/24

subnet while the other compute node and the storage

node reside in subnet 192.168.30.0/24. Each node has 24

physical cores with hyperthreading (48 threads), 192GB

RAM, 250GB SSD and is connected to a shared 10Gbps

network. During the experiments we did not use the

storage node to optimize for network traffic, but it was

used as a next hop to route traffic from the subnet

(192.168.40.0/24) that did not match the Chameleon

stitchport’s subnet.

As we have shown in our initial evaluation of the Dy-

Namo system [2] 144 and 48 HTCondor compute slots

are enough to execute the nowcast and the wind speed
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Fig. 9 Wind Ensemble - Network Utilization.

workflow ensembles, respectively, without any compute

imposed delays. Using HTCondor tags, the 3 compute

nodes residing on the subnet 192.168.40.0/24 have been

assigned to nowcast workflow tasks, while the node on

the subnet 192.168.30.0/24 has been assigned to the

wind speed workflow. Finally, all the stitchable net-

works were created with a network bandwidth of 1Gbps.

Software. On the submit node (where parts of the

Dynamo system reside), the master node and the worker

nodes we have installed HTCondor v8.8.9, and we have

customized its configuration to match the role of each

node. In this setup, the workers are configured with

partitionable slots and they advertise a workflow tag so

they can be matched to the correct workflow. Addition-

ally, on the submit node we have installed the nightly

build of Pegasus v5.0.0 and the Apache HTTP server,

to allow the workers to retrieve input files, configura-

tion files and the application containers over HTTP. All

of the workers use Singularity v3.6.1, and Mobius was

used to provision compute resources on ExoGENI and

Chameleon, and establish the network connections be-

tween ExoGENI, Chameleon and the CASA repository.

6.3 Workflow Ensembles - Network Requirements

The two workflow ensembles present different network

requirements due to the amount of tasks and the con-

tainer transfers they instantiate. We profile the network

utilization on CASA’s data repository at UNT, dur-

ing the execution of the two workflow ensembles, using

a dedicated 1Gbps layer2 connection and the testcase

datasets described in Section 6.1.

Figure 9 shows that the wind workflow ensemble is

executed for ~2100 seconds, has an average bandwidth

usage of ~200Mbps with a peak close to 240Mbps, while

the total amount of data transferred is ~44GBs.

Figure 10 depicts the network utilization imposed

by the nowcast workflow ensemble. The nowcast calcu-
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Fig. 10 Nowcast Ensemble - Network Utilization.

lations are occupying resources for ~3200 seconds and

they lead the network to congestion for prolonged peri-

ods of time. The average network utilization is close to

900Mbps with spikes reaching 960Mbps, and the total

amount of data transferred is ~280GBs.

From Figures 9 and 10 it is clear that the two work-

flow ensembles cannot fairly share the shame network

resources without one of them impacting the other’s

QoS constraints, since the nowcast workflow ensemble

will lead to prolonged network congestion. In our pre-

vious work [2] we used workflow runtime optimizations

provided by Pegasus (e.g., task clustering) in order to

lower nowcast’s network requirements, but we did not

apply them to this study since it is our goal to eval-

uate the effectiveness of DyNamo’s new network QoS

capabilities and ensemble management throttling tech-

niques.

6.4 Experimental Results

To conduct our vSDX study, we used 3 scenarios with-

out throttling the ensembles via Pegasus-EM.

– 1Gbps Dedicated: Each workflow ensemble had a

dedicated 1Gbps layer 2 link provisioned with Mo-

bius, connecting the data repository to the compute

resources.

– 1Gbps vSDX-Shared: Both workflow ensembles shared

the same 1Gbps layer 2 link provisioned with Mo-

bius, connecting the data and compute. No QoS

policies where applied.

– 1Gbps vSDX-Shared-QoS: Both workflow ensembles

shared the same 1Gbps layer 2 link provisioned with

Mobius, connecting the data and compute. Individ-

ual QoS policies were applied to each workflow en-

semble. 300Mbps for Wind and 700Mbps for Now-

cast.

For each of the 3 scenarios, we repeated the work-

flow ensemble executions 5 times, leading to 900 work-
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Fig. 11 Wind Ensemble Workflow Makespans.
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Fig. 12 Nowcast Ensemble - Workflow Makespans.

flow submissions and over 240,000 file transfers gen-

erating over 4TBs of network traffic. Figures 11 and

12 present makespan statistics of the individual work-

flows of the ensembles, while Figures 13 and 14 present

statistics of the individual data transfers of the work-

flow ensembles.

To explore the space for different ensemble throt-

tling configurations, we executed the two workflow en-

sembles under 42 unique configurations, varying the
number of maximun concurrent wind and nowcast work-

flows. In every configuration we make sure that wind

ensemble concurrency is greater or equal of the nowcast

ensemble concurrency. We justify this decision to prune

some of the possible configurations, on the fact that

nowcast is congesting the network while wind doesn’t,

and by exploring that space we won’t get useful insight.

– Wind ensemble: Concurrency was altered from 1 to

16 with a step of 2.

– Nowcast ensemble: Concurrency was altered from 1

to 12 with a step of 2.

This resulted in over 2000 additional workflow ex-

ecutions and over 13TBs of data transfers. Figures 15

and 16 present heatmaps of the average individual work-

flow makespans of the two ensembles. Figures 17 and 18

present heatmaps of the makespans of the two workflow

ensembles. These results are discussion in Section 6.4.4
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Fig. 13 Wind Ensemble - Data Transfer Durations.
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Fig. 14 Nowcast Ensemble - Data Transfer Durations.

6.4.1 Dedicated link performance

To conduct our vSDX analysis, we first executed the

nowcast and wind workflow ensembles under the best

conditions possible, using 1Gbps dedicated layer2 con-

nection and no Pegasus-EM throttling. For the wind en-

semble Figures 11 and 13 show a very consistent work-

flow duration (~300 seconds) and file transfer duration

with very little deviation. On the other hand, since the

nowcast workflow was creating network congestion we

observe a noticeable deviation in both the workflow and

file transfer durations (Figures 12 and 14). More than

half of the workflows in the nowcast ensemble are com-

pleted within less than 1500 seconds. However, there

are workflow executions that take from 500 seconds all

the way to ~2,400 seconds.

6.4.2 Uncontrolled network sharing

When we allow the two workflow ensembles to share the

same network resources without any QoS policy, then

we observe a very noticeable increase to the workflow

makespans (Figures 11, 12 middle). The most impacted

are the workflows of the wind ensemble, where the av-

erage workflow duration increases from 300 seconds to

over 1000 seconds, with some workflows completing ex-

ecution close to 1800 seconds. This is an increase of

over 500%. The impact of the additional network over-

head is also visible in the nowcast workflows, although

more subtle. The median nowcast workflow duration
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Fig. 15 Wind Average Workflow Makespans.
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Fig. 16 Nowcast Average Workflow Makespans.

increased by about 200 seconds, while there were more

workflows to the far ends of the spectrum.

6.4.3 Applying SDX QoS policies

Finally, based on the network profiles presented in Fig-

ure 9 and Figure 10 we allocated 300Mbps of the avail-

able network bandwidth to the wind workflow ensem-

ble and 700Mbps to the nowcast workflow ensemble, in

an attempt to accommodate any network spikes of the

wind ensemble. Both Figures 11 and 13 (right) show an

improvement of the wind workflow median makespan

and data transfer durations. The wind ensemble’s statis-

tics have returned to a more consistent and predictable

state with small deviation, similar to the execution con-

ditions when a dedicated network link was used. Mean-

while, as it was expected, the median runtime of the

nowcast workflows has increased since there is less avail-

able bandwidth (700Mbps) than what the workflow would

optimally require (~900Mbps). However, the relative in-

crease in comparison to the dedicated link runtimes is

less than 60%. Something we did not expect to see was

that even though the median duration of the file trans-

fers in the nowcast ensemble increased by a few seconds,

the transfers became more consistent, reducing the du-

ration of the slowest transfers.
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Fig. 17 Wind Ensemble Makespans.
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Fig. 18 Nowcast Ensemble Makespans.

6.4.4 Applying QoS Policies using Pegasus-EM

DyNamo, through the Pegasus Ensemble Manager throt-

tling capabilities, it offers another opportunity to ap-

ply QoS policies on workflow ensembles that share net-

work resources. We executed the wind workflow ensem-

ble with workflow execution parallelism ranging from 1

to 16, and the nowcast ensemble with workflow execu-

tion parallelism ranging from 1 to 12. Figures 15 and

16 present the average workflow makespans of the two

ensembles and we can distinguish a pattern for both

cases. As we increase the concurrency of the nowcast

ensemble (moving to the right) the average workflow

execution time increases in both cases, and affects the

turnaround times. For the wind workflows there is a

350% worst case increase, and for the nowcast work-

flows there is a 320% worst case increase. On the other

hand increasing the concurrency of the wind ensemble

(moving to the top) doesn’t affect the execution times,

which was expected.

Figures 17 and 18 show the makespans of the whole

ensembles. In Figure 17 as we increase the wind en-

semble parallelism (moving to the top) and maintain-

ing the nowcast ensemble parallelism equal to 1, the

makespan of the wind ensemble decreases, but only un-

til max concurrency equals 6. After that there is no

improvement. However as we increase the nowcast en-

semble parallelism (moving to the right) we need to in-
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crease wind ensemble parallelism again to improve the

makespans. In Figure 18 the makespan of the nowcast

ensembles is governed only by the execution parallelism

set for them. As we increase the nowcast ensemble exe-

cution parallelism (moving to the right) the makespan

of the ensembles is reduced, until max concurrency of

8 is reached. After this point we don’t observe any sig-

nificant improvements, the network gets significantly

saturated and the workflow turnaround time is tripled

(Figures 15, 16) compared to the non-congested state.

One thing that is notable with the Pegasus-EM throt-

tling, is that we were able to get better workflow

turnaround times for the nowcast ensemble under a

shared resource scenario, than in the 1Gbps dedicated

link scenario (Figure 12 left boxplot). By setting the

nowcast ensemble’s workflow execution parallelism to

8 the average workflow turnaround time is under 1000

seconds (Figure 16). This can be explained due to the

fact that the nowcast ensemble overly saturates the net-

work (Figure 10) and by pacing the rate of the dis-

patched nowcast workflows we can achieve better aver-

age workflow execution times.

6.4.5 Discussion

Based on our experimentation DyNamo can aid to main-

tain the QoS of workflow ensembles when they are fac-

ing unfair network contention. Even though, TCP con-

gestion algorithms attempt to provide a fair share of

the network to all of the flows occupying it [64], they

cannot provide it at the level of workflow ensembles.

Workflow ensembles that flood the network with trans-

fers are claiming a bigger chunk of the available band-

width, impacting other ensembles with fewer transfers,

which struggle to gain their network share. When vSDX

policies can be enabled, DyNamo, through well-thought

infrastructure deployment-design, can identify the indi-

vidual flows that belong to specific workflow ensembles

and effectively allocate bandwidth to meet their QoS

expectations. In the case that vSDX policies cannot be

applied, DyNamo, through the Pegasus-EM, can throt-

tle workflow ensembles that congest the network and

allow a more fair network allocation to the rest of the

ensembles competing for their share.

In our current implementation all the aforementioned

policies and techniques are considered not adaptive.

Even though they can be changed and take effect on

the fly during the execution of the workflow ensembles,

there’s no automated mechanism adapting the policies

to maximize the utilization of the resources. A simple

example is having one workflow ensemble actively using

the resources. In this case it is not an optimal strategy

to throttle the workflow ensemble’s network bandwidth

in the name of a future ensemble that needs higher net-

work priority. The incorporation of Prometheus moni-

toring in the DyNamo framework opens up the possibil-

ity of applying reactive QoS policies by monitoring the

state of the infrastructure in combination with work-

flow level feedback.

7 Conclusion

In this paper we introduced three new additions to the

DyNamo system. These extensions address monitoring,

infrastructure and operational challenges of CASA’s dis-

tributed, atmospheric science workflows. The newly

added Virtual Software Defined Exchange (vSDX) ca-

pabilities provide fine-grained control over the dynami-

cally established networks, via link adaptation, flow pri-

oritization and traffic control between endpoints. These

policies can be an effective way to avoid unfair use of

network resources. Even if single workflow ensembles

are capable of flooding and congesting the network,

other ensembles can maintain their own QoS require-

ments. To evaluate the QoS polices we deployed two of

CASA’s workflow ensembles (wind speed and nowcast)

and we showed that even though the nowcast ensem-

ble is capable of interfering with the wind ensemble, by

applying the QoS policies the interference is removed

and the wind ensemble’s performance returns to lev-

els close to the ones observed using a dedicated net-

work link. Another contribution was the Pegasus En-

semble Manager (Pegasus-EM) extension. Pegasus-EM

now supports file and time-based workflow triggering

logic that allows CASA to automatically execute its

workflows as new data arrive while managing the num-

ber of the concurrent workflows being executed. In our

evaluation we showed that Pegasus-EM provides an al-

ternative way of applying QoS policies using DyNamo

and can promote a fairer sharing of both network and

compute resources. This is essential for the infrastruc-

tures that don’t offer Software Defined Network (SDN)

support and QoS policies need to be applied. Finally we

incorporated the Prometheus monitoring system into

the DyNamo framework, providing comprehensive in-

formation about the status of the network and the com-

pute resources, allowing CASA scientists to better un-

derstand the performance of their provisioned resources

across the clouds. In the future, we plan to extend the

DyNamo system’s capabilities by stitching to more re-

source providers, supporting streaming workflows, de-

veloping new CASA workflows and provide mechanisms

that will allow the applications to automatically eval-

uate the current pressure applied on the provisioned

resources and make adjustments to the infrastructure
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without user intervention (e.g., change the QoS policies

of workflow ensembles).
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T. Ören, and R. Kashyap, Eds., 2019, pp. 711–723.

22. “On-demand secure circuits and advance reservation sys-
tem,” https://www.es.net/engineering-services/oscars/.

23. M. Islam, A. K. Huang, M. Battisha, M. Chiang,
S. Srinivasan, C. Peters, A. Neumann, and A. Abdelnur,
“Oozie: Towards a scalable workflow management system
for hadoop,” in Proceedings of the 1st ACM SIGMOD
Workshop on Scalable Workflow Execution Engines and
Technologies, ser. SWEET ’12. New York, NY, USA:
Association for Computing Machinery, 2012. [Online].
Available: https://doi.org/10.1145/2443416.2443420

24. I. F. Senturk, P. Balakrishnan, A. Abu-Doleh, K. Kaya,
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