
Workflow Submit Nodes as a Service on Leadership Class
Systems

George Papadimitriou
georgpap@isi.edu

University of Southern California

Karan Vahi
vahi@isi.edu

University of Southern California

Jason Kincl
kincljc@ornl.gov

Oak Ridge National Laboratory

Valentine Anantharaj
anantharajvg@ornl.gov

Oak Ridge National Laboratory

Ewa Deelman
deelman@isi.edu

University of Southern California

Jack Wells
wellsjc@ornl.gov

Oak Ridge National Laboratory

ABSTRACT
DOE scientists, today, have access to high performance computing
(HPC) facilities with very powerful systems that enable them to
execute their computations faster, more efficiently, and at greater
scales than ever before. To further their knowledge and produce
new discoveries, scientists rely on workflows - sometimes very
complex - that provide them with an easy way to automate, repro-
duce and verify their computations. However, historically, creating
workflow submission environments in large HPC facilities has been
cumbersome, requires expertise and many man-hours of effort due
to the peculiarities, policies, and the restrictions that these systems
present. In this paper we discuss the approach a large DOE facil-
ity (OLCF) is taking in order to provide containers as a service
to its users. This capability is used to create Pegasus workflow
management system submit nodes as a service (WSaaS) at the
Oak Ridge Leadership Computing Facilities (OLCF), targeting the
Summit supercomputer. This deployment builds upon the Kuber-
netes/Openshift cluster (Slate) that exists within OLCF’s DMZ and
its automation triggers. Additionally, we evaluate our approach’s
overhead and effort to deploy the solution as compared to previous
solutions, such as setting up a Pegasus submission environment on
OLCF’s login nodes or submitting jobs remotely via the rvGAHP.

CCS CONCEPTS
• Networks → Cloud computing; • Computer systems orga-
nization → Cloud computing; Grid computing.

KEYWORDS
Pegasus, Kubernetes, Scientific Workflows, Summit Supercomputer

ACM Reference Format:
George Papadimitriou, Karan Vahi, Jason Kincl, Valentine Anantharaj, Ewa
Deelman, and Jack Wells. 2020. Workflow Submit Nodes as a Service on
Leadership Class Systems. In Practice and Experience in Advanced Research
Computing (PEARC ’20), July 26–30, 2020, Portland, OR, USA. ACM, New
York, NY, USA, 8 pages. https://doi.org/10.1145/3311790.3396671

ACMacknowledges that this contributionwas authored or co-authored by an employee,
contractor, or affiliate of the United States government. As such, the United States
government retains a nonexclusive, royalty-free right to publish or reproduce this
article, or to allow others to do so, for government purposes only.
PEARC ’20, July 26–30, 2020, Portland, OR, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6689-2/20/07. . . $15.00
https://doi.org/10.1145/3311790.3396671

1 INTRODUCTION
In the past decade, there has been a push for building state of
the art exascale and petascale systems such as Summit at Oak
Ridge Leadership Computing Facility (OLCF) [29], Cori at National
Energy Research Scientific Computing Center (NERSC) [28], and
Bluewaters at the National Center for Supercomputing Applica-
tions (NCSA) [27] that provide computational scientists access to
thousands of cores and terabytes of memory, that are backed with
reliable and scalable networks and parallel filesystems. Because of
the value of these resources to science and the increasing cyber-
threats, these state of the art systems have been designed with both
performance and security in mind. As a result, accessing them is
strictly controlled with a variety of measures, such as two-factor
authentication to the login nodes, keeping the compute nodes be-
hind a firewall, and using only designated data transfer nodes to
transfer data in and out of the facilities.

For computational scientists, such systems provide an attractive
option to scale up their simulations and analysis. Historically, these
systems have been geared towards supporting large parallel (often
MPI-based) monolithic applications. While the need to support such
applications still exists, the computing landscape is also shifting
towards using scientific workflows to manage the execution of
these codes, the associated data transfers of the inputs, and often
complex post-processing of the outputs. Scientists often setup their
analysis as a workflow containing thousands of jobs that are a
mix of multi-node and single node jobs, with some of them being
responsible for the data movement associated with the analysis.

To manage these workflows, scientists usually rely on a work-
flow management system such as Pegasus [14], Makeflow [5], and
Apache Airflow [17]. Ideally, scientists would prefer to submit these
workflows from their desktops using remote job submission capa-
bilities. However, the adoption of two-factor authentication on the
modern HPC systems has made remote job submission extremely
hard. While some techniques, such as rvGAHP [10], exist for doing
remote submissions, they are hard to setup and can be difficult
to debug. As a result, scientists find themselves deploying their
workflow middleware stack within the science DMZ of the HPC
systems, often on the login nodes. However, this approach is also
not ideal, as restrictions exist that prevent easy deployment of ser-
vices on login nodes. These include the lack of root access to install
software and its dependencies, and also limitations on long running
user processes on the login nodes. While it’s possible for users
to deploy and configure the workflow system of their choice in
user space, it increases the difficulty for computational scientists to

https://doi.org/10.1145/3311790.3396671
https://doi.org/10.1145/3311790.3396671

PEARC ’20, July 26–30, 2020, Portland, OR, USA Papadimitriou, et al.

use these resources effectively, since processes can be terminated
by the administrators without notifying them, interrupting their
experiments.

A natural solution to this is to allow users to deploy containers
that have their software and workflow middleware pre-configured.
However, to execute workflows from these containers, users need
access to both the underlying shared filesystem and the batch sched-
uler. From a system administrator’s perspective, allowing users to
run containers on the login nodes carries risks, such as the poten-
tial of user privilege escalation. Hence, in some cases invocation
of containers on the login nodes is strictly monitored with limited
access to the resources, and in others it’s completely prohibited.
The operators of these resources recognize these challenges and
have recently taken steps to make it easier for users to config-
ure their own workflow submit nodes within the science DMZ of
the HPC systems. They have setup Kubernetes/OpenShift-based
clusters within their DMZ that allow users to start containers and
configure their workflowmiddleware. These containers have access
to both the shared filesystem on the cluster, and the underlying
batch system that enables users and workflow systems to submit
jobs to the compute resources.

In this paper, we describe our experiences of setting up and cre-
ating a Pegasus Workflow Submit Node as a service (WSaaS) at the
Oak Ridge Leadership Computing Facilities (OLCF), targeting the
Summit supercomputer and other OLCF resources such as RHEA,
and the DTNs. This service allows computational scientists to easily
spin up a fully configured Pegasus workflow management system
submit node and to submit their analysis pipelines to OLCF re-
sources. The paper is organized as follows. In Section 2, we provide
an overview of the underlying technologies used by the site oper-
ations team at OLCF, and by our deployment. Section 3 describes
our approach to building this service and how we bootstrapped
the various components together. In Section 4, we evaluate our ap-
proach’s overhead and effort to deploy this solution as compared to
previous approaches, such as setting up a Pegasus workflow submis-
sion environment directly on a login node, or submitting remotely
via the rvGAHP. Finally, we discuss related work in Section 5 and
summarize our conclusions in Section 6.

2 BACKGROUND
2.1 Pegasus WMS
Pegasus [14] is a popular workflow management system that en-
ables users to design workflows at a high-level of abstraction. The
workflow descriptions are independent of the resources available
to execute the workflow tasks and are also independent of the lo-
cation of data and executables. Pegasus transforms these abstract
workflows into executable workflows that can be deployed onto dis-
tributed and high-performance computing resources such as DOE
Leadership Computing Facilities (e.g., NERSC [28] and OLCF [29]),
shared computing resources (e.g., XSEDE [37], OSG [32]), local
clusters, and academic and commercial clouds. During the com-
pilation process, Pegasus performs data discovery, locating input
data files and executables. Data transfer tasks are automatically
added to the executable workflow and perform two key functions:
(1) stage in input files to staging areas associated with the com-
puting resources, and (2) transfer the generated outputs back to a

user-specified location. Additionally, data cleanup (removes data
that is no longer required at the execution site) and data registration
tasks (that catalog the output files) are also added to the workflow.
To manage user’s data, Pegasus interfaces with a wide variety of
backend storage systems that use different data access and transfer
protocols.

Pegasus relies on HTCondor [36] DAGMan as its worklfow ex-
ecutor to run and manage the generated executable workflows.
DAGMan in turn, submits the workflow jobs, as they become ready
to run (when all parent jobs have completed successfully) to the
underlying job queue managed by HTCondor. During workflow
execution, provenance information from workflow and job logs
is automatically parsed and stored in a relational datastore by a
monitoring daemon called pegasus-monitord [20].

2.2 HTCondor
HTCondor [36] is a comprehensive job management system. In
contrast to other batch systems such as PBS [7] and SLURM [34],
it is particularly suited for distributed high throughout comput-
ing (HTC) environments, where one can setup a compute pool of
nodes connected over a local area network or a wide area network.
HTCondor provides users with a local job queue managed by a
daemon HTCondor Schedd to which users submit jobs. In addition
to submitting jobs to HTCondor managed compute resources, HT-
Condor also provides a component HTCondor-G [18] that allows
users to submit jobs to grid resources. Whenever, a grid job is de-
tected in the local job queue, HTCondor-G spawns a daemon called
GridManager that manages the submission and monitoring of the
job against the grid resource via the Grid ASCII Helper Protocol
(GAHP) [19]. While developed initially to support submission the
Globus GRAM [13] frontends, HTCondor-G and GridManager have
been updated to support submission to other local or remote (via
ssh) batch schedulers.

2.3 rvGAHP
Historically, scientists have used push-based remote job submis-
sions for submitting resource provisioning jobs or direct submission
of long running compute tasks from their local workflow submit
hosts to DOE compute resources, using SSH or GRAM. With the
rollout of two-factor authentication, traditional SSH based push
mechanisms are no longer possible as they entail doing two-factor
authentication for each SSH connection, potentially on a per job
basis. Globus GRAM once a standard for remote job submission
using X509 credentials is no longer supported, and as a result it’s
no longer deployed on newer systems. One possible solution to the
two-factor authentication, is the pull-based job provisioning [26, 35]
done at the remote resource. Users start pilot jobs at the remote end,
which connect to a job queue on the user’s submit node (outside of
the DOE compute resources) and pull a list of jobs that need to be
executed. The pull-based job provisioning approach has the advan-
tage of reducing queuing delays from the job submitter perspective.
However, these approaches can result in a resource mismatch be-
tween the resources required and the current set of jobs that are
ready to execute on the workflow submission node. This mismatch
can be of paramount concern when executing thousands of jobs

Workflow Submit Nodes as a Service on Leadership Class Systems PEARC ’20, July 26–30, 2020, Portland, OR, USA

that collectively use hundreds of thousands of hours of computing
resources.

In order to achieve push-based remote job submissions a new
technique, called “reverse GAHP” (rvGAHP), was presented in [10].
It uses a reverse SSH connection from the remote resource to con-
nect to an HTCondor GridManager process on the user workflow
submit node. This allows HTCondor-G GridManager process to
automatically connect to a GAHP process running on the remote
resource, whenever it detects a job in the local HTCondor job queue
on a workflow submit node. This approach achieves push-based
job submissions, without requiring DOE resources to accept SSH
connections and effectively circumvents the two-factor authentica-
tion. While this approach achieves high efficiency of resource usage
similar to normal push-based job submissions, it is a complicated
setup for a normal user to do. It requires users to compile and run
HTCondor in user space, on the DOE resources. If we compare it
to the direct job submission to the batch scheduler, it suffers longer
latencies between the jobs finishing on the remote resource and
them being detected by the HTCondor daemon on the workflow
submit node.

2.4 Kubernetes
Kubernetes is a second generation descendent of Borg, the con-
tainer management system used by Google to manage long-running
latency-sensitive services as well as resource-intensive batch jobs [9,
38]. Kubernetes is described as “a portable, extensible, open-source
platform for managing containerized workloads and services” [23].

Traditionally, scientific workflows and application workloads
were deployed on physical servers that often resulted in inefficient
utilization of resources, poor performance, and resource contention.
Further, the workloads were not easy to scale, and expensive to
deploy and maintain. The advent of virtual machines (VM) and
support for them in hardware allowed multiple virtual machines
to be hosted on the same hardware with the applications being
securely isolated among the VMs [1]. However, this deployment
approach is also relatively resource-intensive involving the VMs
hosting the complete operating system and the associated software
stack and components.

Lately, container technologies have been widely adopted with
Kubernetes being one of the available platforms for managing the
containerized workloads. Containers have several advantages over
VMs. Containers are lightweight. They are relatively easy to create,
deploy and manage. Containers embrace runtime isolation while
running an application image on an operating system. Kubernetes
provides a platform for the deployment of containers across the
cluster with a workload that can be scaled in response to demand.

Kubernetes can be described and explained in terms of a set of
useful abstractions that represent the state of the system, includ-
ing what containerized applications are running and the network
and storage resources associated with the workloads. A Pod is the
most basic execution unit that could be created and deployed in
Kubernetes. All containers in a Pod are guaranteed to be scheduled
onto a single node. A single Pod typically runs only one application
container, however multiple application containers can co-exist
inside the same Pod, which controls their execution. The Pod ceases
to exist when the containers exit.

A Kubernetes Service, on the other hand, provides an abstract
way to expose an application running on a set of Pods as network
service to the rest of the world. Since Pods are ephemeral, Services
allow users to access the application containers via a common way.
There are multiple Service types. One is the Nodeport which exposes
the Service on each host node’s IP at a static port.

One of the main design goals of Kubernetes is easier deploy-
ment and management of complex distributed systems while tak-
ing advantage of the optimal resource utilization facilitated by
containerization that has “transformed the data center from being
machine-oriented to being application oriented”[9].

2.5 Project Slate
Slate is a cluster resource for deploying and running user-managed
persistent application services at the OLCF. It is built on top of
OpenShift [21], an open source container application platform de-
veloped by Red Hat based on Kubernetes, and provides container
orchestration services to OLCF users, allowing them to run services
that do not fit into a batch job, such as workflow management
systems.

Slate is integrated with the OLCF’s existing HPC environment,
including the GPFS file system (Alpine) and Summit’s batch sched-
uler, which are available inside the container. Access to the shared
file systems (Alpine and NFS) is offered through the host executing
the containers, while access to the batch schedulers (Summit, Rhea,
DTN) is provided over SSH to the DTNs, since they have cross
cluster job submission capabilities to Summit’s and Rhea’s batch
queues. To offer this level of integration transparently to the users,
custom triggers and hooks have been built into the cluster that
make the HPC environment resources available via annotations
in the deployment specification of the Pods. Services running on
the cluster are available externally to all project users and can be
reached from the compute clusters at OLCF, via direct network
access.

Within the Slate cluster, user-invoked Pods and services run
under the automation user assigned to a project. This is a unique
type of user within OLCF that has some privileges in addition to
those of the regular user accounts. The automation user comes
with long lasting ssh-keys, generated by the facility, which are
white-listed on OLCF’s DTN nodes, and allow password-less SSH
authentication from the Slate cluster IP range without the use of
two-factor authentication. This functionality is fundamental to the
way job submissions are supported, since SSH access to the DTNs
in an automated, but secure, way is necessary.

3 APPROACH
As described in Section 2.5, the Slate cluster allows OLCF users to
deploy persistent application services with access to major HPC
computing resources, such as the shared file systems and the batch
schedulers of Summit and Rhea. This integration makes the de-
ployment of a fully functional workflow management system, like
Pegasus, feasible on cutting edge HPC infrastructure. However,
spawning such a service is not a trivial task if starting from scratch.
It requires a good understanding of the underlying infrastructure,
of the workflow management system and its dependencies, and
a lot of attention has to be given to the details in order to make

PEARC ’20, July 26–30, 2020, Portland, OR, USA Papadimitriou, et al.

Data Node

socat

HTCondor BOSCO

pegasus-submit-
service

Openshift

pegasus-submit-pod

Remote Port
Forwarding

SSH

Summit

Nodes 1 … 4,608

RHEA

Nodes 1 … 512

Cross-Submission

to Summit’s LSF

Batch Scheduler

Cross-Submission
to RHEA’s Slurm

Batch Scheduler

Alpine File System

NFS Home

User 1

User K

.

.

.

Secure Connection

Secure Connection

Figure 1: Pegasus Kubernetes (OpenShift) Deployment at OLCF.

the deployment reliable and easy to use. Our approach builds on
top of the infrastructure and the automation introduced with the
Slate Kubernetes (OpenShift) cluster, and we developed Pegasus
Workflow Submit Nodes as a Service (WSaaS) that can leverage
OLCF’s resources, while bypassing the two-factor authentication
for workflow jobs and keeping the deployment simple to use.

Figure 1 illustrates our Pegasus Kubernetes deployment at OLCF.
In this deployment users authenticate themselves against the Slate
cluster using two-factor authentication and can bring up a Pegasus
workflow submission Pod, within OLCF’s DMZ. The Pod is config-
ured for SSH style job submissions with HTCondor BOSCO[40] on
the DTNs. Access to both the GPFS filesystem (Alpine) and NFS is
provided from within the Pod, and since Pods are ephemeral, a per-
sistent state of the workflow execution is maintained there. Finally,
as described in Section 2.5, the cross-submission functionality of
the DTNs is used to submit and monitor the batch jobs to OLCF’s
compute clusters.

Four main components contribute to the realization of this de-
ployment. The pegasus-submit-pod, pegasus-submit-service, socat
and HTCondor BOSCO.
pegasus-submit-pod. This Pod runs a container image with Pe-
gasus and HTCondor installed, and is configured to submit jobs to
OLCF resources. To create the container image we have developed a
generalized Dockerfile recipe that prepares it for an OLCF automa-
tion user on the Slate cluster. An account for the automation user is
created in the image, with the same user id and group id assigned
by OLCF administrators. Since some configuration steps need to
take place after the initialization of the Pod, we have automated the
process with a use of a container entrypoint script. In this script
the following actions take place:

• SSH keys of the automation user are soft-linked to a location
where BOSCO expects to find them

• HTCondor binaries become aware of the Pod’s hostname, to
avoid errors in daemon processes

• BOSCO becomes aware of the address the Slate cluster ex-
poses HTCondor’s GridManager service, via an environmen-
tal variable

Additionally, inside the Pod exists a script that configures the
environment on OLCF’s DTNs, which has to be invoked once, the
very first time the service is used.
HTCondor BOSCO.One of the requirements that the Slate cluster
imposes to the users, is that all the job submissions have to be
done through a DTN node, which is decoupled from the container
environment spawned in Kubernetes. The expectation is that users
connect to the DTN over SSH to submit and monitor jobs. In the
case of Pegasus, we can achieve SSH based job submissions using
a technology called BOSCO [40]. BOSCO is a tool shipped with
HTCondor that allows users to submit HTCondor jobs over SSH to
remote batch clusters. To achieve job submissions over SSH, BOSCO
connects the local HTCondor GridManager on the workflow submit
node, to a Remote GAHP process on a node (in our case the DTNs)
that can submit and monitor jobs to a batch scheduler. Traditionally,
in order to connect the two processes, BOSCO uses SSH remote port-
forwarding to forward packets from the Remote GAHP process back
to the GridManager of the submit node. However, this functionality
is not available to the automation user accounts on the DTNs. To
work around this in our deployment we introduced the pegasus-
submit-service on the Slate cluster and the socat process on the
DTNs.
pegasus-submit-service. This Kubernetes Service exposes HT-
Condor’s GridManager port to the rest of the OLCF computing
resources (e.g., the DTNs). This is a requirement for the Remote
GAHP, since it needs to contact the GridManager service directly.
The pegasus-submit-service is configured to use Kubernetes’ “Node-
port” service type, which binds the GridManager’s port to a port
on the Slate cluster between 30000 and 32767. Our deployment
requires one pegasus-submit-service for each pegasus-submit-pod,
since each one of them runs its own GridManager. The assignment
of the “Service” to a “Pod” is done dynamically by the Slate cluster,
via annotations in the deployment configuration scripts.

Workflow Submit Nodes as a Service on Leadership Class Systems PEARC ’20, July 26–30, 2020, Portland, OR, USA

Parameter
Values

Equilibrate Stage Production Stage

Amber14

Unpack Database

Coherent

Incoherent

Post-processing
and Viz

Figure 2: A diagram of a branch of the SNS workflow.

socat. Socat [15] is a command line-based utility that establishes
two bidirectional byte streams and transfers data between them.
It is deployed on the DTNs in order to allow the Remote GAHP
to communicate with the HTCondor GridManager service, by for-
warding TCP packets destined for the data nodes loopback device
on a specific port, to the pegasus-submit-service. Every time the
Remote GAHP needs to communicate with the GridManager ser-
vice, a socat process is started and it is terminated after the end of
the communication.

3.1 Produced Artifacts
Since we started this work, we had the vision of providing the OLCF
users with a generic way to bring up the entire setup presented
in Figure 1, without the need to dive into all the configuration
details. Thus, we have developed a templated approach[30] that is
publicly available on GitHub and can be used by any OLCF user
interested in spawning a Pegasus workflow submit node on the
Slate cluster. It aids in the preparation of a custom “pegasus-submit-
pod” container image for any OLCF automation user and provides
deployment specification files in YAML format, which spawn the
“pegasus-submit-service” and “pegasus-submit-pod” on the Slate
cluster, using OpenShift’s origin client [22]. More specifically this
GitHub repository includes the following files:

• bootstrap.sh generates the personalized Dockerfile and Ku-
bernetes specifications for a deployment.

• pegasus-submit-build.yml contains Kubernetes build spec-
ifications for building the container image.

• pegasus-submit-service.yml contains Kubernetes Service
specification that can be used to spawn a Nodeport service
that exposes the HTCondor Gridmanager running in a pega-
sus submit Pod, to outside world.

• pegasus-submit-pod.yml contains Kubernetes Pod speci-
fication that can be used to spawn a pod with Pegasus and
HTCondor that has access to OLCF’s GPFS filesystem and
the batch schedulers.

Additionally, while developing this approach we discovered that
the HTCondor scripts monitoring jobs on the LSF batch queues
weren’t compatible with the available environment on the OLCF
DTNs. We enhanced the LSF monitoring scripts, with logic that
queries the status of all jobs and persistently stores the results in a
cache that reduces polling overheads. Currently, we are in touch
with the HTCondor developers to contribute these enhancements
back to HTCondor’s main branch.

4 EVALUATION
To evaluate the Pegasus Kubernetes (OpenShift) deployment at
OLCF, we consider four aspects: 1) ease of deployment, 2) job sub-
mission delays, 3) functionality, and 4) limitations of the possible

Kubernetes

Summit
Login Node

rvGAHP
(Summit)

<25
mins

~2
days

~3 ~3
weeks

Time to Deploy

P
eg

as
us

 D
ep

lo
ym

en
t

Spent once
Spent each time

Figure 3: Time to Deploy on a New System

approaches. Throughout these categories we compare the three
Pegasus deployment options: local deployments on the login nodes,
deployments that use the rvGAHP technique for remote submis-
sions, and the Kubernetes solution. Moreover, to assess overheads
in the job submission delays present in the three approaches, we
configured the Nanodiamond Pegasus Workflow to run on Summit
and Rhea, in order to collect statistics.

Nanodiamond Pegasus Workflow. The Nanodiamond Pega-
sus workflow is a material science workflow developed by scientists
at the Spallation Neutron Source (SNS) [25], a DOE research facility
at Oak Ridge National Laboratory. The SNS workflow executes
an ensemble of molecular dynamics (MD) and neutron scattering
intensity calculations to optimize a model parameter value, for ex-
ample, to investigate temperature and hydrogen charge parameters
for models of water molecules. The workflow takes as input a set
of temperature values and four additional parameters: (1) type of
material, (2) the number of required CPU cores, (3) the number
of timesteps in the simulation, and (4) the frequency at which the
output data is written. Figure 2 shows a branch of the workflow that
analyzes a single temperature value. First, each set of parameters is
fed into a series of parallel molecular dynamics simulations using
NAMD [31]. The first simulation computes an equilibrium, which
is used by the second simulation to compute the production dynam-
ics. The output from the MD simulations has the global translation
and rotation removed using AMBER’s [33] cpptraj utility, which is
passed into Sassena [24] to compute coherent and incoherent neu-
tron scattering intensities from the trajectories. The final outputs
of the workflow are transferred to the user’s desktop and loaded
into Mantid [6] for analysis and visualization.

4.1 Ease of Deployment
To assess the difficulty of configuring these three Pegasus deploy-
ments at OLCF, we initially deployed Pegasus and HTCondor on
Summit’s login nodes, and alongside HTCondor we installed the
rvGAHP server-side binaries. To test the rvGAHP setup we used
a Pegasus submit node at the USC Information Sciences Institute
(USC/ISI), where we installed rvGAHP’s client-side binaries. Fig-
ure 3 presents the approximate time each of the deployments took
us to setup, and assumes that the user has an average level of sys-
tem deployment knowledge and experience. The deployment on
Summit’s login node took us about 2 days. Configuring the rvGAHP
took us about 3 days, since it involves additional steps, while test-
ing and debugging take longer due to its complexity. On the other

PEARC ’20, July 26–30, 2020, Portland, OR, USA Papadimitriou, et al.

 0

 5

 10

 15

 20

Kubernetes DTN rvGAHP (DTN)

D
el

ay
 (

S
ec

on
ds

)

Pegasus Deployment

Min. Avg. Max.

Figure 4: HTCondor Queue Time to Submission

hand, the Pegasus Kubernetes deployment took us about 3 weeks
to create, test, and harden the solution. However, this was a cost
that we paid once designing the deployment, and now we can set it
up reliably in less than 25 minutes. This time accounts for building
the container image, spawning the service and doing the one time
required configuration on the DTNs.

All the deployments after their initial configuration require a few
seconds to be initialized. The main difference is how much time it
takes to create the environment for the first time, test and debug it.
With the Kubernetes deployment, all the steps are well documented
and there are very few places where a user error can occur (less
than six commands are required to deploy). Whereas, the login
node and the rvGAHP deployments require more complicated steps
of compiling the source code and configuring the environment
manually, which is more prone to errors and requires a certain
level of expertise. Additionally, the steps for the login node and
the rvGAHP deployments have to be done for each new machine
and for each user that’s interested in running the Pegasus WMS
on that machine. Thus, compared to the other two approaches, the
Pegasus Kubernetes deployment is far easier to maintain and keep
up-to-date, and because it needs minimal effort to deploy, it is more
friendly to the users, and as a result more likely to be deployed.

4.2 Job Submission Delays
To evaluate job submission delays, we configured comparable envi-
ronments to the Pegasus Kubernetes approach for both the “Login
Node” and rvGAHP deployments. All of the deployments submit to
the compute clusters (Summit and RHEA) via the cross submission
functionality of the DTNs, and the data transfers are handled by
the DTNs or the workflow submit node. In the first scenario we
used the Pegasus Kubernetes deployment as seen in Figure 1. In
the second scenario we deployed Pegasus and HTCondor on one
of OLCF’s DTNs. In the third scenario we installed the rvGAHP
server-side binaries on the same DTN and used a Pegasus submit
node located at USC/ISI to conduct the workflow runs.

In our experiments, we used a version of the Nanodiamond
Pegasus workflow (Figure 2) with two branches, for two different
temperatures. This resulted in a workflow DAG that contained 11
compute jobs (8 MPI jobs and 3 single core jobs). Originally, the

 6

 8

 10

 12

 14

 16

 18

 20

Kubernetes DTN rvGAHP (DTN)

D
e
la

y
 (

S
e
co

n
d

s)

Pegasus Deployment

Figure 5: HTCondor Queue Time Distribution

Nanodiamond workflow ingests a few MBs of configuration files
and outputs over 15GBs of data, while having a runtime of over
10 hours. For our tests we reduced the output to a few MBs and
the runtime to about 20 minutes, since we were interested only in
studying job submission delays. We configured the workflow to
execute Equilibrate and Production stages on Summit, since NAMD
can offload work to the GPUs. To execute cpptraj, as well as the
Coherent and Incoherent neutron scattering intensities calculations,
we used RHEA. Finally for unpacking the Sassena DB and the data
movement we used the DTNs. For each deployment scenario we
did 30 workflow runs and in total we submitted 990 compute jobs to
the batch queues at OLCF.

Figure 4 presents the time each compute task spent in HTCon-
dor’s queue, as observed by HTCondor, for the different deployment
scenarios. This delay quantifies the time it took for the job to be
successfully submitted to the batch queues (remote) since it was
submitted to the HTCondor queue (local). This statistic is retrieved
fromHTCondor logs, where it is logged with a precision of a second.
For all the deployments we observe a minimum delay of 8 seconds
across the batch queues (violet color), with the maximum observed
delay (orange color) for the Kubernetes deployment being 1 sec-
ond lower than the rest (18 vs 19 seconds). Moreover, the average
HTCondor queue delay (green color) for the Kubnernetes and the
DTN (login node) deployments, are comparable at ~11.20 seconds,
while the average queue delay for the rvGAHP is ~13.10 seconds,
approximately 2 seconds higher. In Figure 5, the distribution of
the HTCondor queue time is depicted. Minimum and maximum
delays are mainly outliers, and while median delay for the “Login
Node” and rvGAHP approaches are comparable, the median delay
for Kubernetes is smaller by ~3 seconds.

Having Figures 4 and 5 in mind, the Kubernetes deployment
doesn’t impose additional overheads over the “Login Node” ap-
proach and overall it provides faster submission turnaround times,
due to the isolation the Kubernetes cluster provides. The additional
delays observed in rvGAHP’s deployment can be attributed to rv-
GAHP’s client and server overhead, and even though our submit
node at ISI had a higher round-trip time than that of the local OLCF
machines, it was only measured at 75𝑚𝑠 , which shouldn’t have
affected the average rvGAHP queue delay by much.

Workflow Submit Nodes as a Service on Leadership Class Systems PEARC ’20, July 26–30, 2020, Portland, OR, USA

4.3 Functionality
The Pegasus Kubernetes deployment provides the same function-
ality as having Pegasus deployed on a login node. Multiple users
assigned to a project can access the Slate cluster and spawn their
own “pegasus-submit-pod” under the project’s automation user.
Additionally, the deployment leverages all the major OLCF com-
pute resources. Auxiliary tasks, such as data movement, can be
carried out locally on the submit node or at the batch queues of the
DTNs, and compute tasks, such as simulations, can be submitted to
both Summit and RHEA using the LSF and Slurm batch scheduling
systems.

A challenge when using virtual infrastructures is that workflow-
level checkpointing provided by Pegasus may not work. Pegasus
generates rescue worfklows while the workflow is executing–this
is done by saving the intermediate data products and the state of
the workflow. This information can be used to restart a workflow
execution from the last known state in case of a failure. Even though
Pods are ephemeral, this functionality is still offered to the users,
since we maintain all the workflow generated files and logs in the
shared filesystem.

Finally, due to Pegasus’ versatile job mapping capabilities, a sin-
gle workflow can be mapped to all the aforementioned resources
(Summit, Rhea) transparently for the user. Therefore, scientists can
configure a single analysis workflow that automatically executes
transfers on the DTNs, runs the simulations and the heavy process-
ing on Summit and then does the lightweight post processing steps
on Rhea.

4.4 Limitations
Despite its positive contributions, such as minimizing the time to
deploy, our approach also comes with its limitations. First of all,
unlike the rvGAHP approach, this deployment cannot be used for
remote job submissions, as it requires the Pegasus submit node
within OLCF’s DMZ, running on the Slate cluster. While we don’t
consider this to be a significant drawback, it can be a deal-breaker
for some user operational scenarios. Furthermore, it imposes re-
strictions on the number of running jobs a single project allocation
can have on Summit and Rhea. OLCF imposes per-user limits to the
number of eligible to run jobs and the maximum number of queued
jobs that exist in the batch queues. All the jobs submitted from our
“pegasus-submit-pod” are done under a project’s automation user.
Because of this, our deployment sets the limit of the number of jobs
a project can submit to the batch queues equal to the limits of a
single user. This limitation doesn’t exist in the "Login Node" and
rvGAHP deployments, since each user can submit jobs under their
own user id.

5 RELATEDWORK
Until recently, there has not been much work in allowing users to
setup their own workflow submit nodes within the science DMZ
of large, high performance computing facilities. One of the earlier
efforts, is the virtual clusters framework [39] developed at SDSC
that provides virtual HPC clusters to projects using the NSF spon-
sored Comet supercomputer. Another related project is VC3 [8]
that allows users to install custom software environments and auto-
mates deployment of cluster frameworks from different resources

to access diverse computing resources for collaborative science
teams.

However, now, HPC facilities are starting to see the benefits that
containerized applications as services can have for their users and
their operations. They are actively working on integrating systems
like OpenShift [21] and Rancher [2] into their infrastructure. The
National Energy Research Scientific Computing Center (NERSC)
is offering a service that can be used to spawn Docker containers,
called Spin [11]. Spin uses the Rancher-cli to create containers and
users can thus deploy workflow managers, databases, science gate-
ways and more. Spin is not as tightly integrated with the main HPC
resources at NERSC, as project Slate at OLCF (Section 2.5). However,
NERSC, in the past, has accommodated long running workflows by
providing ssh-keys that lift the two-factor authentication require-
ment.

In terms of getting jobs submitted from a remote workflow or
workload management system to OLCF resources, others have ex-
plored pull-based solutions, in order to work-around the two-factor
authentication barrier. Projects such as IceCube [4] and ATLAS [3]
have used pull-based pilot job resource provisioning to fetch and
execute jobs on OLCF Titan using pyGlidein and Panda [12, 26, 35].
The Southern California Earthquake Center (SCEC) uses the rv-
GAHP [10] approach to do push-based job submissions to OLCF
Summit. On the other hand, other facilities have opted to provide
rest endpoints to satisfy their users that rely on remote submissions
for their science. The Texas Advanced Computing Center (TACC)
provides an Agave [16] REST API front-end that allows users to
submit jobs to TACC resources from their science gateways.

6 CONCLUSION
In this paper we presented how we leveraged the Slate cluster
within OLCF’s DMZ, in order to create a Workflow Submit Node as
a Service (WSaaS) that uses Pegasus as its workflow management
system. Our approach creates a fully functional Pegasus submit
node in less than 25 minutes, compared to other solutions that
require experience with the workflow management system soft-
ware and its dependencies, and need days of testing and debugging.
We compared our newly proposed approach for submitting jobs to
OLCF’s Summit and Rhea systems with a deployment on a “Login
Node” and remote submissions that use the rvGAHP technique. We
found that it introduces fewer delays than the rvGAHP solution
and has a slight edge over deployments on login nodes (such as
the DTNs), due to the resource isolation Kubernetes provides. Ad-
ditionally, we developed and made publicly available on GitHub,
a templated approach that can be used by any OLCF user that’s
interested in deploying a Pegasus submit node on the Slate cluster.

In the future we would like to explore how Kubernetes’ persis-
tent storage volumes can be used across Pods, and what would be
their benefits in the context of workflow execution environments.
Additionally, since Kubernetes’ deployments support automatic
restart of Pods that died suddenly, we are planning to enhance our
Pegasus Kubernetes deployment to automatically salvage running
workflows as Pods become available again and reduce the time
scientists need to check on the status of their workflow runs.

PEARC ’20, July 26–30, 2020, Portland, OR, USA Papadimitriou, et al.

We believe that as more OLCF users become aware of the sim-
plicity and of the benefits that this approach has on executing work-
flows on OLCF’s resources, more scientists will begin adopting it
and focus more on the science aspects of their research, instead of
worrying about how to access the computing resources available
to them.

ACKNOWLEDGMENTS
This work was funded by DOE contract number #DESC0012636,
“Panorama—Predictive Modeling and Diagnostic Monitoring of Ex-
treme Science Workflows”, and by the U.S. Department of Energy,
Office of Science under contract DE-AC02-06CH11357. Also, this
research used resources of the Oak Ridge Leadership Computing
Facility, which is a DOE Office of Science User Facility supported
under Contract DE-AC05-00OR22725. Finally, we would like to
thank Scott Callaghan from SCEC for his help in debugging the
rvGAHP deployment on Summit’s login nodes and OLCF’s data
transfer nodes (DTNs).

REFERENCES
[1] Containers vs. Virtual Machines (VMs): What’s the Difference? https://blog.

netapp.com/containers-vs-vms/.
[2] Rancher. https://rancher.com/.
[3] G. Aad et al. 2008. The ATLAS Experiment at the CERN Large Hadron Collider.

JINST 3 (2008), S08003. https://doi.org/10.1088/1748-0221/3/08/S08003
[4] M. G. Aartsen et al. 2017. The IceCube Neutrino Observatory: Instrumentation

and Online Systems. JINST 12, 03 (2017), P03012. https://doi.org/10.1088/1748-
0221/12/03/P03012 arXiv:astro-ph.IM/1612.05093

[5] Michael Albrecht, Patrick Donnelly, Peter Bui, and Douglas Thain. 2012. Make-
flow: A Portable Abstraction for Data Intensive Computing on Clusters, Clouds,
and Grids. In Proceedings of the 1st ACM SIGMOD Workshop on Scalable Work-
flow Execution Engines and Technologies (Scottsdale, Arizona, USA) (SWEET ’12).
Association for Computing Machinery, New York, NY, USA, Article Article 1,
13 pages. https://doi.org/10.1145/2443416.2443417

[6] Owen Arnold, Jean-Christophe Bilheux, JM Borreguero, Alex Buts, Stuart I Camp-
bell, L Chapon, M Doucet, N Draper, R Ferraz Leal, MA Gigg, et al. 2014. Man-
tid—data analysis and visualization package for neutron scattering and 𝜇 SR
experiments. Nuclear Instruments and Methods in Physics Research Section A: Ac-
celerators, Spectrometers, Detectors and Associated Equipment 764 (2014), 156–166.

[7] A. Bayucan, R. L. Henderson, C. Lesiak, B. Mann, T. Proett, and D. Tweten. 1999.
Portable batch system: External reference specification. In Technical report, MRJ
Technology Solutions, Vol. 5.

[8] Lincoln Bryant, Jeremy Van, Benedikt Riedel, Robert W. Gardner, Jose Caballero
Bejar, John Hover, Ben Tovar, Kenyi Hurtado, and Douglas Thain. 2018. VC3:
A Virtual Cluster Service for Community Computation. In Proceedings of the
Practice and Experience on Advanced Research Computing (Pittsburgh, PA, USA)
(PEARC ’18). Association for Computing Machinery, New York, NY, USA, Article
Article 30, 8 pages. https://doi.org/10.1145/3219104.3219125

[9] Brendan Burns, Brian Grant, David Oppenheimer, Eric Brewer, and John Wilkes.
2016. Borg, Omega, and Kubernetes. ACM Queue 14 (2016), 70–93. http:
//queue.acm.org/detail.cfm?id=2898444

[10] Scott Callaghan, Gideon Juve, Karan Vahi, Philip J. Maechling, Thomas H. Jordan,
and Ewa Deelman. 2017. rvGAHP: Push-Based Job Submission Using Reverse
SSH Connections. In Proceedings of the 12th Workshop on Workflows in Support of
Large-Scale Science (Denver, Colorado) (WORKS ’17). Association for Computing
Machinery, New York, NY, USA, Article Article 3, 8 pages. https://doi.org/10.
1145/3150994.3151003

[11] National Energy Research Scientific Computing Center. Spin. https://docs.nersc.
gov/services/spin/.

[12] CHEP 2018. Big PandaWorkflowManagement System on OLCF Titan for HENP and
extreme scale applications. https://indico.cern.ch/event/587955/contributions/
2937286/attachments/1683059/2705499/Klimentov_CHEP-Jul2018.pdf

[13] Karl Czajkowski, Ian Foster, Nick Karonis, Carl Kesselman, Stuart Martin, Warren
Smith, and Steven Tuecke. 1998. A resource management architecture for meta-
computing systems. In Job Scheduling Strategies for Parallel Processing, Dror G.
Feitelson and Larry Rudolph (Eds.). Springer Berlin Heidelberg, Berlin, Heidel-
berg, 62–82.

[14] Ewa Deelman, Karan Vahi, Gideon Juve, Mats Rynge, Scott Callaghan, Philip J
Maechling, Rajiv Mayani, Weiwei Chen, Rafael Ferreira da Silva, Miron Livny,
and Kent Wenger. 2015. Pegasus: a Workflow Management System for Science

Automation. Future Generation Computer Systems 46 (2015), 17–35. https:
//doi.org/10.1016/j.future.2014.10.008 Funding Acknowledgements: NSF ACI
SDCI 0722019, NSF ACI SI2-SSI 1148515 and NSF OCI-1053575.

[15] Dest-Unreach. Socat. http://www.dest-unreach.org/socat/.
[16] Rion Dooley, Steven R. Brandt, and John Fonner. 2018. The Agave Platform: An

Open, Science-as-a-Service Platform for Digital Science. In Proceedings of the
Practice and Experience on Advanced Research Computing (Pittsburgh, PA, USA)
(PEARC ’18). Association for Computing Machinery, New York, NY, USA, Article
Article 28, 8 pages. https://doi.org/10.1145/3219104.3219129

[17] Apache Software Foundation. Apache Airflow. https://airflow.apache.org/.
[18] James Frey, Todd Tannenbaum, Ian Foster, Miron Livny, and Steve Tuecke. 2001.

Condor-G: A Computation Management Agent for Multi-Institutional Grids.
In Proceedings of the Tenth IEEE Symposium on High Performance Distributed
Computing (HPDC). San Francisco, California, 7–9.

[19] GAHP. Grid ASCII Helper Protocol. https://research.cs.wisc.edu/htcondor/gahp/.
[20] Dan Gunter, Ewa Deelman, Taghrid Samak, Christopher Brooks, Monte Goode,

Gideon Juve, Gaurang Mehta, Priscilla Moraes, Fabio Silva, Martin Swany, and
Karan Vahi. 2011. Online WorkflowManagement and Performance Analysis with
Stampede. In 7th International Conference on Network and Service Management
(CNSM-2011).

[21] Red Hat. OpenShift. https://www.openshift.com/.
[22] Red Hat. Origin Client. https://github.com/openshift/origin.
[23] Kubernetes. https://kubernetes.io/.
[24] Benjamin Lindner and Jeremy C Smith. 2012. Sassena—X-ray and neutron scat-

tering calculated from molecular dynamics trajectories using massively parallel
computers. Computer Physics Communications 183, 7 (2012), 1491–1501.

[25] TE Mason, D Abernathy, I Anderson, J Ankner, T Egami, G Ehlers, A Ekkebus,
G Granroth, M Hagen, K Herwig, et al. 2006. The Spallation Neutron Source in
Oak Ridge: A powerful tool for materials research. Physica B: Condensed Matter
385 (2006), 955–960.

[26] F H Barreiro Megino, K De, A Klimentov, T Maeno, P Nilsson, D Oleynik, S
Padolski, S Panitkin, and T Wenaus and. 2017. PanDA for ATLAS distributed
computing in the next decade. Journal of Physics: Conference Series 898 (oct 2017),
052002. https://doi.org/10.1088/1742-6596/898/5/052002

[27] NCSA. National Center for Supercomputing Applications (NCSA). http://www.
ncsa.illinois.edu/.

[28] NERSC. National Energy Research Scientific Computing Center (NERSC). https:
//www.nersc.gov.

[29] OLCF. Oak Ridge Leadership Computing Facility. https://www.olcf.ornl.gov.
[30] George Papadimitriou. 2020. Pegasus Deployment at OLCF Kubernetes. https:

//doi.org/10.5281/zenodo.3825253
[31] James C Phillips, Rosemary Braun,WeiWang, James Gumbart, Emad Tajkhorshid,

Elizabeth Villa, Christophe Chipot, Robert D Skeel, Laxmikant Kale, and Klaus
Schulten. 2008. Scalable molecular dynamics with NAMD on the IBM Blue
Gene/L system. IBM Journal of Research and Development 26, 1.2 (2008), 1781–
1802. https://doi.org/10.1147/rd.521.0177

[32] Ruth Pordes, Don Petravick, Bill Kramer, Doug Olson, Miron Livny, Alain Roy,
Paul Avery, Kent Blackburn, Torre Wenaus, Frank Würthwein, Ian Foster, Rob
Gardner, Mike Wilde, Alan Blatecky, John McGee, and Rob Quick. 2007. The
open science grid. Journal of Physics: Conference Series 78 (jul 2007), 012057.
https://doi.org/10.1088/1742-6596/78/1/012057

[33] Romelia Salomon-Ferrer, David A Case, and Ross C Walker. 2013. An overview
of the Amber biomolecular simulation package. Wiley Interdisciplinary Reviews:
Computational Molecular Science 3, 2 (2013), 198–210.

[34] SchedMD. Simple Linux Utility for Resource Management. http://slurm.schedmd.
com/.

[35] D Schultz, B Riedel, and G Merino. 2017. Pyglidein – A Simple HTCondor
Glidein Service. Journal of Physics: Conference Series 898 (oct 2017), 092018.
https://doi.org/10.1088/1742-6596/898/9/092018

[36] Douglas Thain, Todd Tannenbaum, andMiron Livny. 2005. Distributed computing
in practice: the Condor experience. Concurr. Comput. 17, 2-4 (Feb. 2005), 323–356.

[37] J. Towns, T. Cockerill, M. Dahan, I. Foster, K. Gaither, A. Grimshaw, V. Hazlewood,
S. Lathrop, D. Lifka, G. D. Peterson, R. Roskies, J. Scott, and N.Wilkins-Diehr. 2014.
XSEDE: Accelerating Scientific Discovery. Computing in Science & Engineering
16, 05 (sep 2014), 62–74. https://doi.org/10.1109/MCSE.2014.80

[38] Abhishek Verma, Luis Pedrosa, Madhukar R. Korupolu, David Oppenheimer, Eric
Tune, and John Wilkes. 2015. Large-scale cluster management at Google with
Borg. In Proceedings of the European Conference on Computer Systems (EuroSys).
Bordeaux, France.

[39] Rick Wagner, Philip Papadopoulos, Dmitry Mishin, Trevor Cooper, Mahidhar
Tatineti, Gregor von Laszewski, Fugang Wang, and Geoffrey C. Fox. 2016. User
Managed Virtual Clusters in Comet. In Proceedings of the XSEDE16 Conference on
Diversity, Big Data, and Science at Scale (Miami, USA) (XSEDE16). Association for
Computing Machinery, New York, NY, USA, Article Article 24, 8 pages. https:
//doi.org/10.1145/2949550.2949555

[40] DWeitzel, I Sfiligoi, B Bockelman, J Frey, FWuerthwein, D Fraser, and D Swanson.
2014. Accessing opportunistic resourceswith Bosco. Journal of Physics: Conference
Series 513, 3 (jun 2014), 032105. https://doi.org/10.1088/1742-6596/513/3/032105

https://blog.netapp.com/containers-vs-vms/
https://blog.netapp.com/containers-vs-vms/
https://rancher.com/
https://doi.org/10.1088/1748-0221/3/08/S08003
https://doi.org/10.1088/1748-0221/12/03/P03012
https://doi.org/10.1088/1748-0221/12/03/P03012
https://arxiv.org/abs/astro-ph.IM/1612.05093
https://doi.org/10.1145/2443416.2443417
https://doi.org/10.1145/3219104.3219125
http://queue.acm.org/detail.cfm?id=2898444
http://queue.acm.org/detail.cfm?id=2898444
https://doi.org/10.1145/3150994.3151003
https://doi.org/10.1145/3150994.3151003
https://docs.nersc.gov/services/spin/
https://docs.nersc.gov/services/spin/
https://indico.cern.ch/event/587955/contributions/2937286/attachments/1683059/2705499/Klimentov_CHEP-Jul2018.pdf
https://indico.cern.ch/event/587955/contributions/2937286/attachments/1683059/2705499/Klimentov_CHEP-Jul2018.pdf
https://doi.org/10.1016/j.future.2014.10.008
https://doi.org/10.1016/j.future.2014.10.008
http://www.dest-unreach.org/socat/
https://doi.org/10.1145/3219104.3219129
https://airflow.apache.org/
https://research.cs.wisc.edu/htcondor/gahp/
https://www.openshift.com/
https://github.com/openshift/origin
https://kubernetes.io/
https://doi.org/10.1088/1742-6596/898/5/052002
http://www.ncsa.illinois.edu/
http://www.ncsa.illinois.edu/
https://www.nersc.gov
https://www.nersc.gov
https://www.olcf.ornl.gov
https://doi.org/10.5281/zenodo.3825253
https://doi.org/10.5281/zenodo.3825253
https://doi.org/10.1147/rd.521.0177
https://doi.org/10.1088/1742-6596/78/1/012057
http://slurm.schedmd.com/
http://slurm.schedmd.com/
https://doi.org/10.1088/1742-6596/898/9/092018
https://doi.org/10.1109/MCSE.2014.80
https://doi.org/10.1145/2949550.2949555
https://doi.org/10.1145/2949550.2949555
https://doi.org/10.1088/1742-6596/513/3/032105

	Abstract
	1 Introduction
	2 Background
	2.1 Pegasus WMS
	2.2 HTCondor
	2.3 rvGAHP
	2.4 Kubernetes
	2.5 Project Slate

	3 Approach
	3.1 Produced Artifacts

	4 Evaluation
	4.1 Ease of Deployment
	4.2 Job Submission Delays
	4.3 Functionality
	4.4 Limitations

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

